national**grid**

Groundwater Sampling, NAPL
Monitoring/Recovery and Groundwater
Treatment Performance Report for the
First Quarter of 2017 (January - March)
for the Hempstead Intersection Street
Former Manufactured Gas Plant Site
Villages of Hempstead & Garden City
Nassau County, New York

Prepared for:

National Grid 175 East Old Country Road Hicksville, New York 11801

Prepared by:

AECOM USA, Inc. 257 West Genesee Street, Suite 400 Buffalo, New York 14202

AECOM

December 2017

GROUNDWATER SAMPLING, NAPL MONITORING/RECOVERY, AND GROUNDWATER TREATMENT PERFORMANCE REPORT FOR THE FIRST QUARTER OF 2017 (JANUARY - MARCH)

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK 11550

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

AECOM USA, Inc. 257 West Genesee Street Suite 400 Buffalo, New York 14202

September 2017

TABLE OF CONTENTS

		<u>P</u>	age No
EXEC	UTIVE S	SUMMARY E-1	
1.0	INTRO	DDUCTION1-1	
2.0	FIELD	ACTIVITIES2-1	
	2.1	Groundwater Depth and NAPL Thickness Measurements2-1	
	2.2	NAPL Recovery 2-2	
	2.3	Groundwater Sampling	
	2.4	Groundwater Treatment System Operation	
3.0	RESUL	LTS3-1	
	3.1	Dissolved-Phase Plume	
	3.2	Potentiometric Heads and NAPL Thickness	
	3.3	Groundwater Analytical Results	
	3.4	NAPL Recovery Volumes	
	3.5	Groundwater Treatment System Performance	
Refere	nces		
		TABLES (Following Text)	
Table 1	1	Summary of Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling, First Quarter 2017	,
Table 2	2	Groundwater and NAPL Measurements, First Quarter 2017	
Table 3	3	NAPL Recovery, First Quarter 2017	
Table 4	1	Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds, First Quarter 2017	t
Table 4	5	Groundwater Treatment Performance Monitoring First Quarter 2017	

2017 1st QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

FIGURES

(Following Tables)

Figure 1	Location Map
Figure 2	Site Map – March 2017
Figure 3	Soil Remediation and Groundwater Treatment Locations
Figure 4	Extent of Dissolved-Phase Plume and Groundwater Analytical Results – March 2017
Figure 5	Potentiometric Surface Map for Shallow Groundwater, March 6, 2017
Figure 6	Potentiometric Surface Map for Intermediate Groundwater, March 6, 2017
Figure 7	Potentiometric Surface Map for Deep Groundwater, March 6, 2017
Figure 8	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, First Quarter 2017

APPENDICES

(Following Figures)

Appendix A Data Usability Summary Report

Appendix B Oxygen System Operation & Maintenance Measurements

2017 1st QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

ACRONYMS AND ABBREVIATIONS

AECOM USA, Inc.

amsl above mean sea level bgs below ground surface

BTEX benzene, toluene, ethylbenzene, xylenes

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DUSR data usability summary report

ft foot (feet)
ft/ft feet per feet

HIMW Hempstead Intersection (Street) Monitoring Well

ISS In Situ Solidification

LNAPL light non-aqueous phase liquid

MGP manufactured gas plant μg/L micrograms per liter MP monitoring points

NAPL non-aqueous phase liquid

NYSDEC New York State Department of Environmental Conservation

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PID photo ionization detector

POB Professional Office Building

QC quality control

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

This report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling, gauging, and recovery of non-aqueous phase liquid (NAPL), and with the groundwater treatment systems at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site during the First Quarter (January, February, and March) 2017.

Quarterly groundwater monitoring and sampling were conducted on March 6 - 13, 2017. This included measuring the depth to groundwater and NAPL thickness in 44 wells. Groundwater samples were collected from 24 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

NAPL monitoring was conducted on January 26, January 27, and March 6, 2017 for a total of three events and NAPL recovery was conducted on January 26 and 27 for a total of two events in the First Quarter of 2017.

The following results were obtained from the groundwater sampling and NAPL monitoring events:

- The general direction of groundwater flow in the First Quarter 2017 in the shallow, intermediate, and deep water-bearing zones was south at an average gradient of approximately 0.002 feet per feet (ft/ft) for shallow, intermediate, and deep water bearing zones.
- The extent of the dissolved-phase groundwater plume boundary and the data for the First Quarter 2017 are shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than 100 μ g/L, extends approximately 905 feet south of the site boundary.
- Dense non-aqueous phase liquid (DNAPL) was detected in one existing site-related well
 during the First Quarter. The well (HIMW-021), is located along the west side of Wendell
 Street, south of the Intersection Street site.
- NAPL monitoring was conducted three times and NAPL recovery was conducted twice during the quarter. There were 3.25 gallons of DNAPL removed during the First Quarter

AECOM USA, INC.

2017 1st QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

2017. A total of 850.6 gallons of NAPL have been recovered to date from all of the Site related recovery wells between April 2007 and March 2017.

The first of two oxygen delivery systems (System No. 2) started operating in October 2010 and continued to promote aerobic conditions in the aquifer near the system during the First Quarter of 2017. The second of two oxygen delivery systems (System No. 1) started operating in April 2011 and continued to promote aerobic conditions in the aquifer near the system during the First Quarter of 2017.

Monthly headspace and water quality parameters were collected from the monitoring points for Systems No. 1 and No. 2 by Island Pump & Tank Corporation. During the First Quarter of 2017, Island Pump & Tank monitored System No. 1 during three events and System No. 2 during three events.

1.0 INTRODUCTION

This quarterly report summarizes the field activities, analytical results, and data interpretations associated with groundwater sampling, gauging, and recovery of NAPL and the monitoring of the groundwater treatment systems during the First Quarter of 2017 at the Hempstead Intersection Street Former MGP site (refer to Figures 1, 2, and 3).

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports are typically provided for the first three quarters of the year and the fourth quarter data typically gets reported as part of the Annual Report. In 2016, the Third and Fourth Quarters were combined in the 2016 Annual Report. Separate reports have been issued quarterly since 2007 as listed in the References section of this report.

AECOM USA, Inc. (AECOM) performed the following activities during the First Quarter of 2017:

- Measured the depth to groundwater and NAPL thickness in 44 off-site wells on March 6 13, 2017 (see Tables 1 and 2).
- Monitored and recovered NAPL at HIMW-021 on January 26 and January 27 and monitored only on March 6, 2017. There were 3.25 gallons of product recovered during the First Quarter 2017 (see Table 3).
- Collected groundwater samples from 24 monitoring wells for laboratory analysis during the scheduled round of quarterly groundwater sampling (see Table 4).

Island Pump & Tank also performed water level measurements, well headspace monitoring with a photoionization detector (PID), and dissolved oxygen (DO) measurements with a DO meter (YSI 55A) on System No. 1 during three events and on System No. 2 during three events in the First Quarter 2017. Monitoring is conducted monthly to assess the performance of groundwater treatment System No. 1 and System No. 2. This data is presented in Table 5.

2.0 FIELD ACTIVITIES

The field activities performed by AECOM during the First Quarter of 2017 included the measurement of the depth to groundwater and NAPL thickness in 44 monitoring wells and the collection of groundwater samples from 24 monitoring wells.

Monitoring wells and piezometers used for these activities are listed in Table 1. First Quarter 2017 groundwater elevations and NAPL thickness values are presented in Table 2, NAPL recovery are reported in Table 3, and the results of groundwater sampling are presented in Table 4.

Island Pump & Tank performed measurements to monitor the performance of the groundwater treatment Systems No. 1 and No. 2 monthly during the First Quarter of 2017. Island Pump & Tank collected water level measurements with an electronic oil/water interface probe, well headspace monitoring data with a PID, and DO measurements with a YSI 55A dissolved oxygen meter on System No. 1 on January 30, February 28, and March 29, 2017 and on System No. 2 on January 30, March 1, and March 28, 2017. This data is presented in Table 5.

2.1 Groundwater Depth and NAPL Thickness Measurements

An electronic oil/water interface probe was used to measure the depth to groundwater and check for the presence of light non-aqueous phase liquid (LNAPL). DNAPL thickness was measured using a weighted cotton string that absorbs oil. Depths to groundwater and NAPL thickness measurements are listed in Table 2. NAPL thicknesses and recovery amounts are listed in Table 3.

There were 44 monitoring wells gauged during the First Quarter March 6, 2017 gauging event. HIMW-12I was not gauged for DNAPL thickness or total well depth and HIMW-12D was not gauged for any of the gauging parameters due to obstructions inside the wells.

2.2 NAPL Recovery

NAPL recovery occurred between 2007 and the Third Quarter of 2011 when the In Situ Solidification (ISS) remediation project began. Approximately 745 gallons of NAPL were recovered between April 2007 and July 2011 when NAPL recovery ended upon the start of ISS treatment. All, but one, of the recovery wells were destroyed to complete the ISS work. NAPL recovery is limited to this one well, HIMW-021, which is located to the south of the site adjacent to the sidewalk of the Professional Office Building (POB), outside the ISS area.

NAPL levels were monitored in well HIMW-021 during three gauging events: January 26, January 27, and March 6, 2017. During the event, the well was gauged with a weighted cotton string to measure the DNAPL thickness. NAPL was recovered from HIMW-021 during the January 26 and 27 events. A total of 3.25 gallons were recovered during the First Quarter 2017. A total of 850.6 gallons of NAPL have been recovered from all of the Site related recovery wells between April 2007 and March 2017.

Table 3 presents First Quarter 2017 NAPL thickness and recovery amounts at HIMW-021 per event and the total NAPL recovery amounts from the site.

2.3 Groundwater Sampling

Low-flow groundwater sampling methods were used to sample groundwater, which included purging groundwater at a rate of between 100 and 500 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, DO, temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e. \pm 10 percent] over a 15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-custody procedures to Pace Analytical Laboratory for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260C) and PAHs (USEPA Method 8270D). Purge water was stored in an onsite storage tank for subsequent offsite disposal. The Data Usability Summary Report is presented in Appendix A.

There were 24 monitoring wells sampled during the First Quarter March 7-13, 2017 groundwater sampling event. Two monitoring wells from the sampling and analysis plan (HIMW-012I and HIMW-012D) were not sampled during this quarterly event because of obstructions inside the wells risers.

Analytical results from the quarterly groundwater sampling event and the additional monitoring wells are presented in Table 4 and Figure 4.

2.4 Groundwater Treatment System Operation

Two oxygen delivery systems were installed to enhance the groundwater oxygen concentrations in the groundwater plume. "System No. 1" is located along Smith Street, a portion of the Long Island Railroad Right of Way, and a portion of Hilton Avenue and began operation in April 2011. "System No. 2" extends from Mirschel Park in the east to Kensington Court in the west and began operation in October 2010. Figure 3 shows the locations of the two systems.

The performance of System No. 1 and System No. 2 was monitored by Island Pump & Tank during the First Quarter 2017 through the measurement of water levels, headspace gas, and water quality parameters in the groundwater monthly, see Table 5. Island Pump & Tank performed water level measurements with an electronic oil/water interface probe, well headspace monitoring with a PID, and DO measurements with a DO meter (YSI 55A). These measurements were collected during the First Quarter and were taken during three events for System No. 1 on January 30, February 28, and March 29, 2017 and during three events for System No. 2 on January 30, March 1, and March 28, 2017. The full system data is included in Appendix B.

3.0 RESULTS

3.1 Dissolved-Phase Plume

The extent of the dissolved-phase groundwater plume boundary and the data for First Quarter 2017 (and the historical concentration ranges) are shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than 100 μ g/L, extends approximately 905 feet south of the site boundary.

3.2 Potentiometric Heads and NAPL Thickness

Potentiometric heads and NAPL thickness measurements for the First Quarter 2017 are presented in Table 2. Potentiometric surface maps for shallow, intermediate, and deep groundwater zones were developed using this data and are shown in Figures 5, 6, and 7, respectively for the First Quarter 2017. The data for First Quarter 2017 indicates that the direction of groundwater flow within the well field was south at an average gradient of approximately 0.002 ft/ft for shallow, intermediate, and deep water bearing zones. These values are consistent with historical data.

DNAPL was observed in one well during the First Quarter 2017 on January 26, January 27, and March 6, 2017 for a total of three events, see Table 3. The well (HIMW-021) is located along the west side of Wendell Street south of the Site and Intersection Street (Figure 8). All wells in the parking lot of the POB were decommissioned in late June 2013 during ISS work. Wells located within the property boundary of the site were previously decommissioned in Fourth Quarter 2011 with the start of the ISS remediation project.

3.3 Groundwater Analytical Results

Groundwater analytical results are summarized in Section 3.1, Table 4, and Appendix A and are illustrated on Figures 4 and 8.

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, *Appendix 2B – Guidance for the Development of Data Usability Summary Reports*, May 2010. The review included completeness of all required deliverables; holding times; quality control (QC) results (blanks, instrument

tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported, except where noted in the DUSR. An electronic copy of the DUSR is included as Appendix A.

3.4 NAPL Recovery Volumes

HIMW-021 is the one remaining product recovery well associated with the site. It is located south of the site in the sidewalk along the west side of Wendell Street. In the First Quarter 2017, NAPL levels were monitored in well HIMW-021 during three gauging events: January 26, January 27, and March 6, 2017. During these events, the well was gauged with a weighted cotton string to measure the DNAPL thickness. During the two January events, a total 3.25 gallons of NAPL was recovered from this well. A total of 8450.6 gallons of NAPL have been recovered to date from all of the Site related recovery wells between April 2007 and March 2017. Table 3 lists the amount of DNAPL gauged in HIMW-021 during each event and the total amount of product recovered.

3.5 Groundwater Treatment System Performance

Groundwater treatment system performance data for First Quarter 2017, as collected and reported by Island Pump & Tank, is presented in Table 5.

System No. 1

System No. 1 DO readings reported in the First Quarter 2017 ranged from a low of 3.97 mg/L at MP-1-8 on January 30, 2017 to a high of 38.07 mg/L at MP-1-2D on January 30, 2017. The overall average DO reading for System No. 1 in the First Quarter was 23.66 mg/L.

There was one PID headspace reading above 1 ppm for System No. 1 in the First Quarter 2017. This reading was 2.3 ppm on January 30, 2017 at MP-1-3D. All other PID readings were below 1 ppm.

During the First Quarter, the system was running and routine maintenance was regularly performed. System No. 1 performed as expected to create an aerobic environment in the aquifer.

System No. 2

System No. 2 DO readings reported in the First Quarter 2017 ranged from a low of 16.05 mg/L at MP-2-5 on March 28, 2017 to a high of 39.38 mg/L at MP-2-3D on January 30, 2017. The overall average DO reading for System No. 2 in the First Quarter was 28.08 mg/L.

There was only one PID headspace readings above 1 ppm for System No. 2 in the First Quarter 2017. This was a reading 1.3 ppm at MP-2-3D on January 30, 2017. All other PID headspace readings were below 0.5 ppm.

During the First Quarter 2017, the system was running and routine maintenance was regularly performed. Based on the data collected during the First Quarter of 2017, System No. 2 performed as expected to create an aerobic environment in the aquifer.

REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

- URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2010e. 2010 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2011a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2011 (January March 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. July.
- URS, 2011b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2011 (April June 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2011c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2011 (July- September 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2012a. 2011 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2012b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2012 (January March 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2012c. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2012 (April June 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2013a. 2012 Annual Groundwater Sampling, NAPL Monitoring, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2013b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2013 (January March 2013) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2013c. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2013 (April June 2013) for the Hempstead Intersection Street Former Manufactured Gas Plant Site.
- URS, 2014a. 2013 Annual Groundwater Sampling, NAPL Monitoring/Recovery, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

- URS, 2014b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2014 (January March 2014) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2015a. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2014 (April June 2014) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2015b. Groundwater Sampling and Groundwater Treatment Performance Report for the Third Quarter of 2014 (July September 2014) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2015c. 2014 Annual Groundwater Sampling, NAPL Monitoring/Recovery, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2015d. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2015 (January March 2015) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2016a. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2015 (April June 2015) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2016b. Groundwater Sampling and Groundwater Treatment Performance Report for the Third Quarter of 2015 (July September 2015) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2016c. 2015 Annual Groundwater Sampling, NAPL Monitoring/Recovery, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. August.
- AECOM, 2017a. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2016 (January March 2016) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- AECOM, 2017b. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2016 (April June 2016) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- AECOM, 2017c. 2016 Annual Groundwater Sampling, NAPL Monitoring/Recovery, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.

TABLES

Table 1 Summary of Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling First Quarter 2017 (1), (2) **Hempstead Intersection Street Former MGP Site**

Well ID		First Quarter ch 6 to 13, 20	017)	NAPL Monito	oring and DNAPL Re	ecovery Events
Well ID	Water	NAPL	Water	January 26,	January 27,	March 6,
	Level	Thickness	Quality	2017	2017	2017
HIMW-003S	Χ	Х				
HIMW-003I	Х	Х				
HIMW-003D	Х	Х				
HIMW-004S	Х	Х				
HIMW-004I	Х	Х				
HIMW-004D	X	Х				
HIMW-005S	X	X	Χ			
HIMW-005I	Х	Х	Χ			
HIMW-005D	X	X	Χ			
HIMW-008S	Χ	X	Χ			
HIMW-008I	Χ	X	Χ			
HIMW-008D	Χ	X	Χ			
HIMW-009S	Χ	X				
HIMW-009I	Χ	X				
HIMW-009D	Χ	X				
HIMW-010S						
HIMW-010I						
HIMW-011S	X	X				
HIMW-011I	Χ	X				
HIMW-011D	Χ	X				
HIMW-012S	Χ	Χ	Χ			
HIMW-012I	Χ					
HIMW-012D						
HIMW-013S	Х	Х				
HIMW-013I	Χ	X	Χ			
HIMW-013D	Х	Х	Х			
HIMW-014I	Х	Х	Χ			
HIMW-014D	X	Х				
HIMW-015I	X	Х	Х			
HIMW-015D	X	Х	X			
HIMW-020S	X	X	X			
HIMW-020I	X	X	Х		V	V (
HIMW-021	X	X	,	X	Х	X (monitor only)
HIMW-022	X	X	X			
HIMW-023	Х	Х	Х			
HIMW-024	Х	Х	Х			<u> </u>
HIMW-025	Х	X	Χ			
HIMW-026I	Χ	X	Χ			
HIMW-026D	Χ	X	Χ			
HIMW-027S	Χ	X	Χ			
HIMW-027I	Χ	X	Χ			
HIMW-028S	Χ	Х	Χ			
HIMW-028I	Χ	Х	Χ			

Table 1

Summary of Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling

First Quarter 2017 (1), (2)

Hempstead Intersection Street Former MGP Site

Well ID		First Quarter ch 6 to 13, 20)17)	NAPL Monitoring and DNAPL Recovery Events			
Well ID	Water Level	NAPL Thickness	Water Quality	January 26, 2017	January 27, 2017	March 6, 2017	
PZ-02	X	Χ					
PZ-03	Х	Х					
OSMW-02	Х	Х					
OSMW-03	Х	Х					

Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- 2 Blank field indicates that the activity was not performed.

Table 2
Groundwater and NAPL Measurements
First Quarter 2017
Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR	Depth to LNAPL	Depth to Water	Depth to DNAPL	Well Depth	Thickness of LNAPL	Thickness of DNAPL	Corrected Potentiometric Head (1)
		[ft bgs]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-003S	3/6/2017	65.00	ND	22.33	ND	34.32	0	0.00	42.67
HIMW-003I	3/6/2017	64.94	ND	22.53	ND	84.97	0	0.00	42.41
HIMW-003D	3/6/2017	65.26	ND	23.14	ND	142.18	0	0.00	42.12
HIMW-004S	3/6/2017	72.74	ND	30.71	ND	41.63	0	0.00	42.03
HIMW-004I	3/6/2017	72.78	ND	30.77	ND	90.46	0	0.00	42.01
HIMW-004D	3/6/2017	72.65	ND	31.12	ND	177.01	0	0.00	41.53
HIMW-005S	3/6/2017	67.19	ND	25.05	ND	38.93	0	0.00	42.14
HIMW-005I	3/6/2017	67.22	ND	25.19	ND	90.48	0	0.00	42.03
HIMW-005D	3/6/2017	67.22	ND	25.54	ND	135.94	0	0.00	41.68
HIMW-008S	3/6/2017	65.04	ND	23.28	ND	36.88	0	0.00	41.76
HIMW-008I	3/6/2017	65.14	ND	23.47	ND	74.78	0	0.00	41.67
HIMW-008D	3/6/2017	64.93	ND	23.25	ND	114.53	0	0.00	41.68
HIMW-009S	3/6/2017	70.03	ND	27.89	ND	39.84	0	0.00	42.14
HIMW-009I	3/6/2017	69.93	ND	27.84	ND	80.44	0	0.00	42.09
HIMW-009D	3/6/2017	69.96	ND	27.91	ND	122.97	0	0.00	42.05
HIMW-010S	3/6/2017	71.60	NM	NM	NM	NM	NM	NM	NM
HIMW-010I	3/6/2017	71.47	NM	NM	NM	NM	NM	NM	NM
HIMW-011S	3/6/2017	71.62	28.98	29.03	ND	40.25	0.05	0.00	42.64
HIMW-011I	3/6/2017	71.43	ND	28.78	ND	93.19	0	0.00	42.65
HIMW-011D	3/6/2017	71.39	ND	28.77	ND	122.28	0	0.00	42.62
HIMW-012S	3/6/2017	61.58	ND	20.92	ND	33.11	0	0.00	40.66
HIMW-012I	3/6/2017	61.59	ND	20.79	ND	NM	0	NM	40.80
HIMW-012D	3/6/2017	61.82	NM	NM	NM	NM	NM	NM	NM
HIMW-013S	3/6/2017	72.83	ND	33.96	ND	48.58	0	0.00	38.87
HIMW-013I	3/6/2017	72.60	ND	33.74	ND	81.42	0	0.00	38.86
HIMW-013D	3/6/2017	72.53	ND	33.71	ND	122.04	0	0.00	38.82
HIMW-014I	3/6/2017	71.71	ND	32.85	ND	96.25	0	0.00	38.86
HIMW-014D	3/6/2017	71.59	ND	34.26	ND	151.85	0	0.00	37.33
HIMW-015I	3/6/2017	64.18	ND	27.81	ND	92.37	0	0.00	36.37
HIMW-015D	3/6/2017	63.96	ND	28.80	ND	152.08	0	0.00	35.16
HIMW-020S	3/6/2017	70.43	ND	29.15	ND	36.72	0	0.00	41.28
HIMW-020I	3/6/2017	70.30	ND	29.02	ND	74.65	0	0.00	41.28

Table 2
Groundwater and NAPL Measurements
First Quarter 2017
Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR [ft bgs]	Depth to LNAPL [ft]	Depth to Water [ft]	Depth to DNAPL [ft]	Well Depth [ft]	Thickness of LNAPL [ft]	Thickness of DNAPL [ft]	Corrected Potentiometric Head (1) [ft amsl]
HIMW-021	3/6/2017	NM	23.58	23.59	43.80	45.30	0.01	1.50	NM
HIMW-022	3/6/2017	74.07	ND	33.97	ND	64.42	0	0.00	40.10
HIMW-023	3/6/2017	74.41	ND	34.13	ND	75.18	0	0.00	40.28
HIMW-024	3/6/2017	59.83	ND	18.72	ND	54.82	0	0.00	41.11
HIMW-025	3/6/2017	62.75	ND	21.17	ND	52.08	0	0.00	41.58
HIMW-26I	3/6/2017	68.13	ND	26.98	ND	84.83	0	0.00	41.15
HIMW-26D	3/6/2017	68.02	ND	26.99	ND	137.61	0	0.00	41.03
HIMW-27S	3/6/2017	69.49	ND	28.13	ND	41.21	0	0.00	41.36
HIMW-27I	3/6/2017	68.96	ND	27.58	ND	70.07	0	0.00	41.38
HIMW-28S	3/6/2017	69.87	ND	28.49	ND	41.38	0	0.00	41.38
HIMW-28I	3/6/2017	69.56	ND	28.25	ND	71.51	0	0.00	41.31
PZ-02	3/6/2017	72.96	ND	29.68	ND	35.47	0	0.00	43.28
PZ-03	3/6/2017	64.58	ND	21.58	ND	29.88	0	0.00	43.00
OSMW-02	3/6/2017	71.59	ND	29.07	ND	45.12	0	0.00	42.52
OSMW-03	3/6/2017	71.39	ND	28.93	ND	44.68	0	0.00	42.46

Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected using a specific gravity = 0.96

TOR top of riser

LNAPL light non-aqueous phase liquid
DNAPL dense non-aqueous phase liquid
ft bgs feet below ground surface
ft amsl feet above mean sea level

ND NAPL not detected NM not measured

Table 3 NAPL Recovery First Quarter 2017 Hempstead Intersection Street Former MGP Site

			1st Quarter 2017								
		J	anuary 26, 201	7	January 27, 2017			March 6, 2017			
	Well	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	
Well ID	Diameter	of LNAPL	of DNAPL	of NAPL	of LNAPL	of DNAPL	of NAPL	of LNAPL	of DNAPL	of NAPL	
	(inches)			Removed ⁽¹⁾			Removed ⁽¹⁾			Removed ⁽¹⁾	
		[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	
HIMW-021	6	ND	2.50	1.75	ND	1.50	1.50	0.01	1.50	0.00	

Volume of NAPL Removed: 1.75	Volume of NAPL Removed: 1.50	Volume of NAPL Removed: 0	.00
------------------------------	------------------------------	---------------------------	-----

Total NAPL volume recovered during the First Quarter 2017:

3.25

Total volume of NAPL recovered in the First Quarter 2017:

3.25 gallons

Total volume of NAPL recovered from April 2007 to First Quarter 2017:

850.6 gallons

Notes:

(1) Volume of product recovered was estimated by using the markings on a five gallon bucket.

LNAPL Light Non-Aqueous Phase Liquid DNAPL Dense Non-Aqueous Phase Liquid

ND NAPL Not Detected NM Not Measured

Table 4

Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds First Quarter of 2017

Hempstead Intersection Street Former MGP Site

	First Quarter 2017						
Well ID	March 7 to Ma	arch 13, 2017					
Well ID	BTEX	PAH					
	[µg/L]	[µg/L]					
HIMW-003S							
HIMW-003I							
HIMW-003D							
HIMW-004S							
HIMW-004I							
HIMW-004D							
HIMW-005S	ND	ND					
HIMW-005I	74	1,457					
HIMW-005D	96	1,584					
HIMW-008S	59	40					
HIMW-008I	ND	ND					
HIMW-008D	ND	ND					
HIMW-009S							
HIMW-009I							
HIMW-009D							
HIMW-010S							
HIMW-010I							
HIMW-011S							
HIMW-011I							
HIMW-011D							
HIMW-012S	ND	ND					
HIMW-012I							
HIMW-012D							
HIMW-013S							
HIMW-013I	ND	ND					
HIMW-013D	2	14					
HIMW-014I	4	25					
HIMW-014D							
HIMW-015I	2	5					
HIMW-015D	ND	ND					
HIMW-020S	ND	ND					
HIMW-020I	ND	ND					
HIMW-021							
HIMW-022	ND	ND					
HIMW-023	ND	ND					
HIMW-024	7	185					
HIMW-025	ND	ND					
HIMW-026I	ND	ND					
HIMW-026D	14	305					
HIMW-027S	1,084	1,165					
HIMW-027I	ND	ND					
HIMW-028S	90	229					
HIMW-028I	ND	ND					
PZ-02							
PZ-03							

A blank field is "Not Sampled".

NAPL is periodically identified in this well.

BTEX Benzene, Toluene, Ethylbenzene, Xylenes PAH Polycyclic Aromatic Hydrocarbons

 μ g/L micrograms per liter ND Not Detected

Table 5 **Groundwater Treatment Performance Monitoring** First Quarter 2017 **Hempstead Intersection Street Former MGP Site**

System #1

	Jar	January 30, 2017			ruary 28, 2	017	March 29, 2017		
ID	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L)	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L)	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L)
MP-1-1S	30.70	0.0	25.55	30.40	0.5	27.59	30.35	0.0	18.69
MP-1-1D	30.64	0.0	29.11	30.48	0.2	29.25	30.23	0.0	24.71
MP-1-2S	25.20	0.0	22.79	25.02	0.0	25.44	24.83	0.4	25.83
MP-1-2D	25.00	0.0	38.07	24.78	0.0	31.12	24.64	0.2	33.79
MP-1-3S	23.15	0.9	19.11	22.95	0.0	29.50	22.70	0.0	24.70
MP-1-3D	23.08	2.3	25.24	22.99	0.0	30.58	22.75	0.0	27.30
MP-1-4S	25.96	0.0	20.40	25.78	0.4	31.01	25.54	0.0	25.59
MP-1-4D	25.92	0.0	26.99	25.75	0.4	30.07	25.50	0.0	29.89
MP-1-5	30.45	0.0	20.21	30.20	0.0	25.39	30.05	0.0	20.25
MP-1-6	22.75	0.2	13.45	22.53	0.0	24.11	22.20	0.0	8.06
MP-1-7	25.90	0.0	30.01	25.80	0.0	22.53	25.52	0.0	18.57
MP-1-8	27.50	0.0	3.97	27.31	0.0	7.72	27.07	0.0	6.25

System #2

	January 30, 2017			M	arch 1, 20	17	March 28, 2017		
ID	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L) Bottom	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L) Bottom	DTW (ft)	PID (ppm)	DO ⁽¹⁾ (mg/L) Bottom
MP-2-1	33.51	0.0	23.00	33.22	0.0	28.61	33.17	0.2	29.15
MP-2-2	34.83	0.0	21.49	34.57	0.2	31.58	34.51	0.0	28.12
MP-2-3S	34.65	0.1	35.51	34.45	0.0	27.11	34.36	0.0	24.77
MP-2-3D	34.83	1.3	39.38	34.57	0.2	32.34	34.43	0.0	26.00
MP-2-4	23.32	0.0	37.33	23.11	0.3	27.94	23.07	0.0	18.12
MP-2-5	21.48	0.0	28.78	21.30	0.0	30.07	21.25	0.0	16.05

Abbreviations DTW: Depth to water (feet)

O₂: Oxygen measurement of well headspace (percent oxygen)

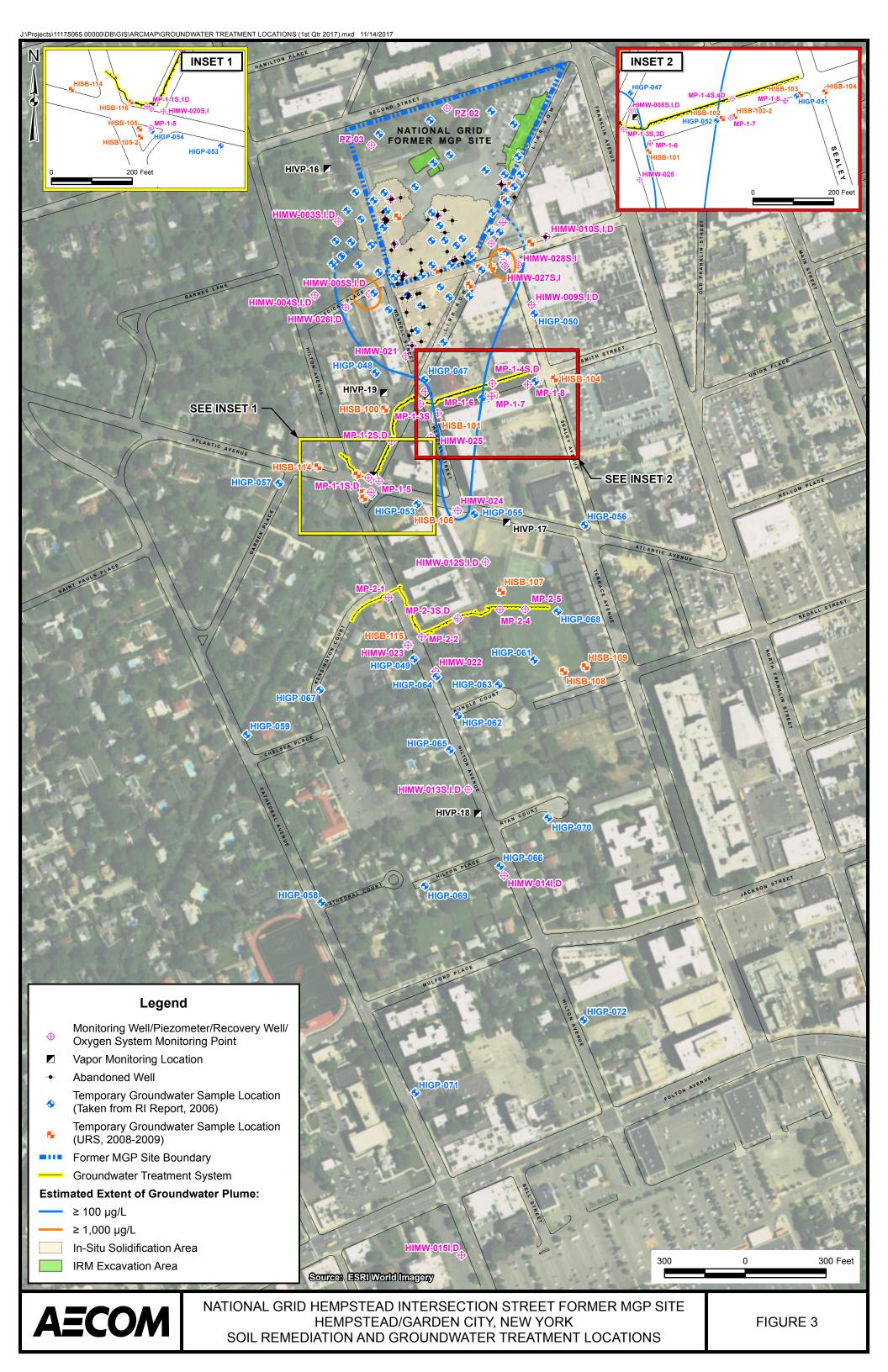
PID: Photoionization Detector measurement of well headspace (parts per million)

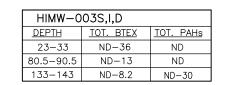
DO: Dissolved Oxygen concentration (percent or milligrams per liter)
NA: Not Accessible

NM: Not Measured

ppm: parts per million


mg/L: milligrams per liter


ft: feet


Note

DO Headspace monitor oxygen detection limit is 40.0%; normal oxygen level in air is 20.9%

 \mathbb{R}^{R} J:\Projects\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\GROUNDWATER MONITORING\SECOND QUARTER 2014\FIGURE-1.dwg 6/11/14

HIMW-008S,I,D							
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs					
25-35	ND-8,240 (59)	ND-3,069 (40)					
63-73	ND-457 (ND)	ND-251 (ND)					
102-112	ND-16 (ND)	ND-46 (ND)					

HIMW-011S,I		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
28-38	603-13,920	2,813-13,076
80-90	ND-49	ND-3

HIMW-014I,D		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
85-95	3-273 (4)	25-288 (25)
140-150	ND-15	ND-6

HIMW-022		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
54-64	ND-83 (ND)	ND-91(ND)

HIMW-025			
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs	
42-52	ND-1,320 (ND)	ND-573 (ND)	

HIMW-028S,I		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
20-40	ND-213 (90)	10-738 (229)
50-70	ND (ND)	ND (ND)

HIMW-0	04S,I,D	
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
30-40	ND-4	ND-1
80-90	ND-13	ND
167-177	ND-4	ND-1

HIMW-0	09S,I,D	
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
28-38	ND-16	ND-8
70-80	ND-2	ND
113-123	ND-16	ND-10

HIMW-012S,I,D		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
22-32	ND-338.8 (ND)	ND-1,391 (ND)
63-73	6-256	65-527
117-127	ND-6	ND-2

HIMW-015I,D		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
80-90	1-111 (2)	ND-273 (5)
141.5-151.5	ND-94 (ND)	ND-1 (ND)

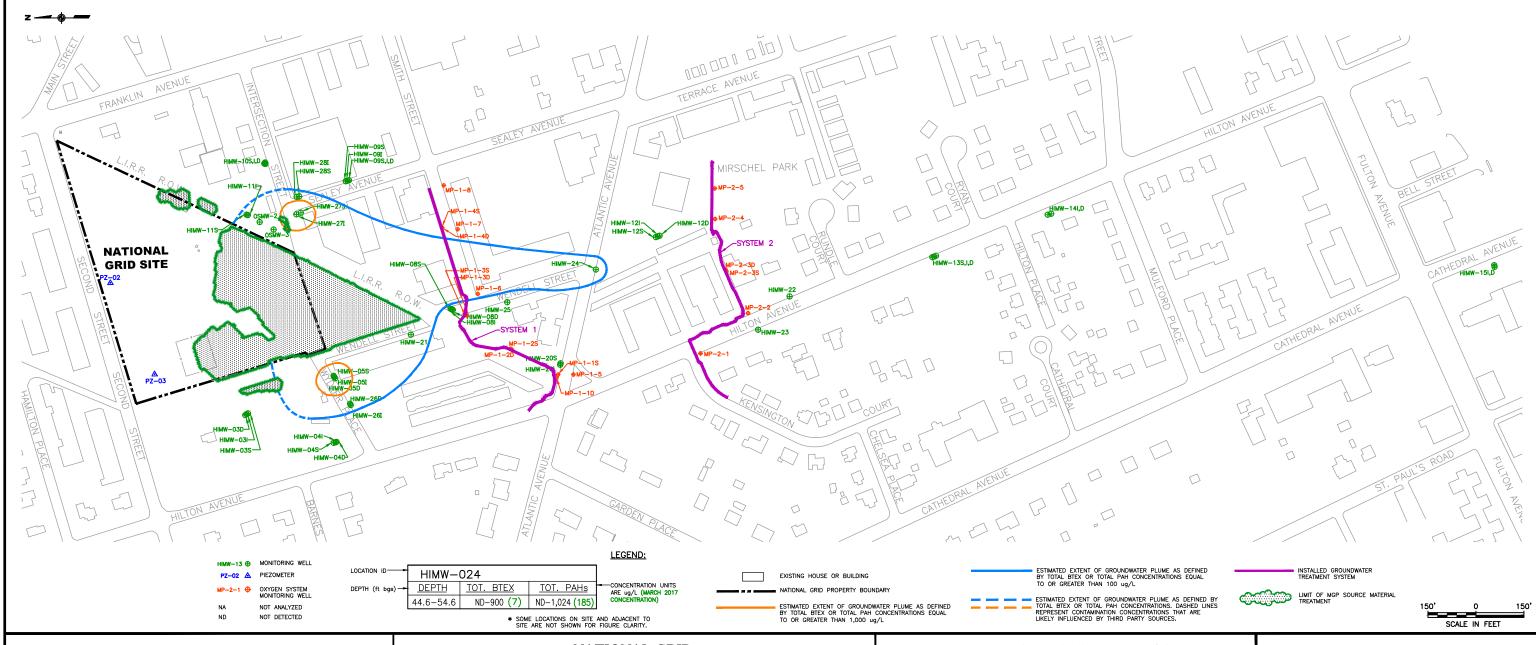
HIMW-023		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
66-76	ND-43 (ND)	ND-43 (ND)

HIMW-2	26 I, D	
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
65-85	ND (ND)	ND-3(ND)
115-135	14-87 (14)	118-1,749 (305)

OSMW-02		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
30-40	2,604	3,517

HIMW-005S,I,D			
	<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
	27-37	ND-232 (ND)	ND-765 (ND)
	80-90	50-439 (74)	891-5,337 (1,457)
	130-140	ND-359 (96)	ND-2,698 (1,584)

HIMW-010S,I,D			
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs	
28-38	ND-33	1-150	
80.5-90.5	ND-13	ND	
112.5-132.5	ND-16	ND	


HIMW-013S,I,D		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
38-48	ND-11	ND
70-80	ND-313 (ND)	ND-156 (ND)
110-120	2-30 (2)	ND-28 (14)

HIMW-020S,I		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
25-35	ND-3 (ND)	ND-5 (ND)
63-73	ND-474 (ND)	ND-3,968 (ND)

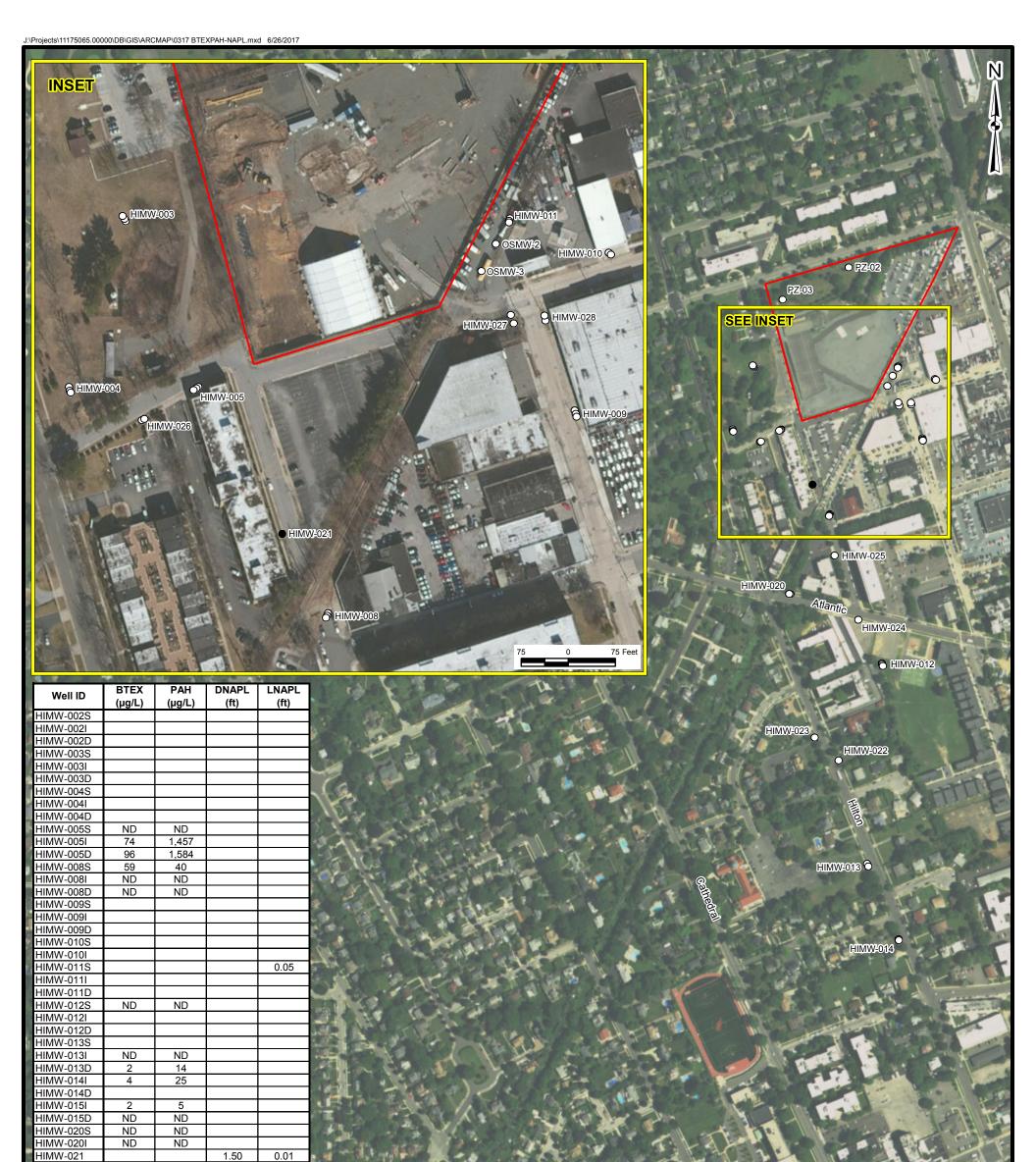
HIMW-024		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
44.6-54.6	ND-900 (7)	ND-1,024 (185)

HIMW-027S, I		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
20-40	447-1,483(1,084)	695-1,807 (1,165)
50-70	ND-2 (ND)	ND-17 (ND)

OSMW-03		
<u>DEPTH</u>	TOT. BTEX	TOT. PAHs
29-39	4,301	2,911

AECOM

NATIONAL GRID HEMPSTEAD INTERSECTION STREET FORMER MGP SITE HEMPSTEAD/GARDEN CITY, NY EXTENT OF DISSOLVED-PHASE PLUME AND GROUNDWATER ANALYTICAL RESULTS -MARCH 2017


HEMPSTEAD/GARDEN CITY, NY
POTENTIOMETRIC SURFACE MAP FOR SHALLOW GROUNDWATER
MARCH 6, 2017

HEMPSTEAD/GARDEN CITY, NY

POTENTIOMETRIC SURFACE MÁP FOR INTERMEDIATE GROUNDWATER MARCH 6, 2017

AECOM

AECOM

ND

185

ND

ND

305

1,165

ND

229

ND

1.50

Monitoring Well - Product Detected

Monitoring Well - Product Not Detected Former MGP Site Boundary

Notes:

LOCID - Location Identifier BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes

PAH - Polynuclear Aromatic Hydrocarbons
DNAPL - Dense Non-Aqueous Phase Liquid
LNAPL - Light Non-Aqueous Phase Liquid
µg/L - Micrograms per Liter
ft - Feet of Product Thickness

ND - Non Detect

Source: ESRI World Imagery

400 Feet

HIMW-015

AECOM

HIMW-021

HIMW-022 IIMW-023 HIMW-024

HIMW-025

HIMW-026I

HIMW-026D

HIMW-027S

HIMW-027I

HIMW-028S

HIMW-028I

PZ-02 OSMW-01 OSMW-02 OSMW-03 ND

ND

ND

1,084

ND

90

ND

HEMPSTEAD/GARDEN CITY, NY TOTAL DISSOLVED-PHASE BTEX/PAH CONCENTRATIONS FIRST QUARTER 2017

APPENDIX A DATA USABILITY SUMMARY REPORT

(Provided in Electronic Format Only)

APPENDIX A DATA USABILITY SUMMARY REPORT FIRST QUARTER 2017

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE VILLAGES OF GARDEN CITY AND HEMPSTEAD LONG ISLAND, NEW YORK

Analyses Performed by: PACE ANALYTICAL

Prepared For:

NATIONAL GRID

175 EAST OLD COUNTRY RD.
HICKSVILLE, NY 11801

Prepared by:

URS CORPORATION
257 WEST GENESEE STREET, SUITE 400
BUFFALO, NY 14202-2657

TABLE OF CONTENTS

		<u>Page No</u> .
I.	INTRODUCTION	A-1
II.	ANALYTICAL METHODOLOGIES AND I	OATA VALIDATIONA-1
III.	DATA DELIVERABLE COMPLETENESS.	A-2
IV.	SAMPLE RECEIPT/PRESERVATION/HOL	DING TIMESA-2
V.	NON-CONFORMANCES	A-2
VI.	SAMPLE RESULTS AND REPORTING	A-2
VII.	SUMMARY	A-3
	TABLE	e.
	(Following	
Table A	A-1 Validated Groundwater Sample Analy	tical Results
Table A	A-2 Validated Field QC Sample Analytica	ll Results
	APPENDI	
	(Following T	ables)
Attachi	hment A Validated Form 1's	
Attachi	hment B Support Documentation	

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, *Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports*, May 2010.

This DUSR discusses the usability of the analytical data for twenty-four (24) groundwater samples, two (2) field duplicates, one (1) matrix spike/matrix spike duplicate (MS/MSD) pair, one (1) field blank, and five (5) trip blanks collected by URS personnel on March 7-13, 2017. Six (6) of the groundwater samples (i.e., HIMW-26I, -26D, -27S, -27I, -28S, and -28I) were collected as part of the oxygen treatment system design evaluation, while the remaining eighteen (18) groundwater samples were collected as part of the 2016 1st quarter groundwater monitoring event at the Hempstead Intersection Street Former MGP Site.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

The samples were analyzed by Pace Analytical for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) USEPA Method SW8260C and
- Polynuclear aromatic hydrocarbons (PAHs) USEPA Method SW8270D.

A limited data validation was performed on the samples in accordance with the guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846
 Method 8260B & 8260C, SOP HW-24, Rev. 4, October 2014 and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

The limited data validation included a review of completeness of all required deliverables; holding times; quality control (QC) results (instrument tunes, calibration standards, blanks, matrix spike recoveries,

field duplicate analyses, laboratory control sample (LCS) recoveries, and surrogate/internal standard recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

The validated analytical results are presented in Tables A-1 and A-2. Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Copies of the chain-of-custodies, case narratives, and documentation supporting the qualification of data are presented in Attachment B. Only problems affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC). All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

The laboratory did not report any non-conformances, nor were there any noted during the data review.

VI. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample size and dilution factors. Results detected below the quantitation limits were qualified 'J' by the laboratory, while results reported from secondary dilution analyses were qualified 'D'.

For sample HIMW-27S, the o-xylene result reported by the laboratory from the undiluted analysis exceeded the linear range of calibration. However, the laboratory did not qualify the undiluted xylene result accordingly on the analytical summary ('E'). Therefore, the o-xylene result from the secondary dilution was used to determine the total xylene result, as reflected on Table A-1.

Field duplicates were collected from monitoring well locations HIMW-08S and HIMW-28S, which exhibited good field and analytical precision.

VII. **SUMMARY**

All sample analyses were found to be compliant with the method and validation criteria, and the data are usable as reported. URS does not recommend the re-collection of any samples at this time.

Peter R. Fairbanks, Senior Chemist

Reviewed By:

George E. Kisluk, Senior Chemist

Date: 6/21/17

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Location ID			HIMW-005D	HIMW-005I	HIMW-005S	HIMW-008D	HIMW-008I
Sample ID			HIMW-5D	HIMW-5I	HIMW-5S	HIMW-8D	HIMW-8I
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled		_	03/09/17	03/09/17	03/09/17	03/08/17	03/08/17
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	=	1.0 U	2.1	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	-	1.0 U				
Toluene	UG/L	-	4.8	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	-	91.3	71.8	1.0 U	1.0 U	1.0 U
Total BTEX	UG/L	100	96.1	73.9	ND	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	166 D	172 D	5.0 U	5.0 U	5.0 U
Acenaphthene	UG/L	-	3.4 J	12.5	5.0 U	5.0 U	5.0 U
Acenaphthylene	UG/L	-	56.6	144 D	5.0 U	5.0 U	5.0 U
Anthracene	UG/L	=	5.0 U				
Benzo(a)anthracene	UG/L	=	5.0 U				
Benzo(a)pyrene	UG/L	-	5.0 U				
Benzo(b)fluoranthene	UG/L	-	5.0 U				
Benzo(g,h,i)perylene	UG/L	-	5.0 U				
Benzo(k)fluoranthene	UG/L	-	5.0 U				
Chrysene	UG/L	-	5.0 U				
Dibenz(a,h)anthracene	UG/L	-	5.0 U				
Fluoranthene	UG/L	-	5.0 U				
Fluorene	UG/L	-	8.2	30.0	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd)pyrene	UG/L	-	5.0 U				
Naphthalene	UG/L	-	1,350 D	1,080 D	5.0 U	5.0 U	5.0 U
Phenanthrene	UG/L	-	5.0 U	18.6	5.0 U	5.0 U	5.0 U
Pyrene	UG/L	-	5.0 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	1,584.2	1,457.1	ND	ND	ND

*Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during	chemistry validation are shown.
	Concentration Exceeds Criteria
J - The reported conc	entration is an estimated value.

Made By: ____; Checked By: ____

U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis.

Location ID			HIMW-008S	HIMW-008S	HIMW-012S	HIMW-013D	HIMW-013I
Sample ID			DUP20170308	HIMW-8S	HIMW-12S	HIMW-13D	HIMW-13I
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater -
Depth Interval (ft)		-	-	-	-		
Date Sampled	-		03/08/17	03/08/17	03/07/17	03/07/17	03/07/17
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Benzene	UG/L	-	31.1	26.0	1.0 U	2.1	1.0 U
Ethylbenzene	UG/L	-	9.7	7.5	1.0 U	1.0 U	1.0 U
Toluene	UG/L	-	7.0	5.1	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	-	27.1	20.3	1.0 U	1.0 U	1.0 U
Total BTEX	UG/L	100	74.9	58.9	ND	2.1	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	5.0 U	1.5 J	5.0 U	5.0 U	5.0 U
Acenaphthene	UG/L	-	1.1 J	1.6 J	5.0 U	5.1	5.0 U
Acenaphthylene	UG/L	-	3.5 J	4.7 J	5.0 U	8.6	5.0 U
Anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(g,h,i)perylene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chrysene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibenz(a,h)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluorene	UG/L	-	5.0 U	1.1 J	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	UG/L	-	13.3	28.7	5.0 U	5.0 U	5.0 U
Phenanthrene	UG/L	-	1.8 J	2.2 J	5.0 U	5.0 U	5.0 U
Pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	19.7	39.8	ND	13.7	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria
J - The reported concentration is an estimated value.

Made By: _____; Checked By: _____

U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis.

Location ID			HIMW-014I	HIMW-015D	HIMW-015I	HIMW-020I	HIMW-020S
Sample ID Matrix Depth Interval (ft)		HIMW-14I	HIMW-15D	HIMW-15I	HIMW-20I	HIMW-20S	
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater -	
		-	-	-	-		
Date Sampled			03/07/17	03/08/17	03/08/17	03/10/17	03/10/17
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	4.1	1.0 U	1.5	1.0 U	1.0 U
Ethylbenzene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total BTEX	UG/L	100	4.1	ND	1.5	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	UG/L	-	9.1	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthylene	UG/L	-	10.2	5.0 U	5.3	5.0 U	5.0 U
Anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(g,h,i)perylene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chrysene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibenz(a,h)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluorene	UG/L	-	2.7 J	5.0 U	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	UG/L	-	3.2 J	5.0 U	5.0 U	5.0 U	5.0 U
Pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	25.2	ND	5.3	ND	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

ags assigned during chemistry validation are shown.	
Concentration Exceeds Criteria	
- The reported concentration is an estimated value.	

Made By: _____; Checked By: _____

U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis.

Location ID			HIMW-022	HIMW-023	HIMW-024	HIMW-025	HIMW-026D
Sample ID		HIMW-22	HIMW-23	HIMW-24	HIMW-25	HIMW-26D	
Matrix			Groundwater	Groundwater	Groundwater -	Groundwater	Groundwater
Depth Interval (ft)		-	-	-		-	
Date Sampled			03/13/17	03/08/17	03/09/17	03/07/17	03/09/17
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	-	1.0 U	1.0 U	6.7	1.0 U	13.7
Total BTEX	UG/L	100	ND	ND	6.7	ND	13.7
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	5.0 U	5.0 U	12.3	5.0 U	54.3
Acenaphthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	2.4 J
Acenaphthylene	UG/L	-	5.0 U	5.0 U	5.8	5.0 U	35.8
Anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(g,h,i)perylene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chrysene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibenz(a,h)anthracene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluoranthene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluorene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	6.9
Indeno(1,2,3-cd)pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	UG/L	-	5.0 U	5.0 U	167 D	5.0 U	199 D
Phenanthrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	6.4
Pyrene	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	185.1	ND	304.8

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria
J - The reported concentration is an estimated value.
U - Not detected above the reported quantitation limit. UJ - Not detected.

Made By: _____; Checked By: _____

U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis.

Location ID			HIMW-026I	HIMW-027I	HIMW-027S	HIMW-028I	HIMW-028S
Sample ID Matrix Depth Interval (ft)		HIMW-26I	HIMW-27I	HIMW-27S	HIMW-28I	DUP20170310	
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
			-	-	-	-	-
Date Sampled			03/09/17	03/13/17	03/13/17	03/09/17	03/10/17
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
Benzene	UG/L	-	1.0 U	1.0 U	35.7	1.0 U	4.8
Ethylbenzene	UG/L	-	1.0 U	1.0 U	544 D	1.0 U	74.7
Toluene	UG/L	-	1.0 U	1.0 U	13.3	1.0 U	1.0 U
Xylene (total)	UG/L	-	1.0 U	1.0 U	491 D	1.0 U	8.1
Total BTEX	UG/L	100	ND	ND	1,084	ND	87.6
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	5.0 U	5.0 U	155 D	5.0 U	13.0
Acenaphthene	UG/L	-	5.0 U	5.0 U	78.7	5.0 U	31.3
Acenaphthylene	UG/L	-	5.0 U	5.0 U	4.0 J	5.0 U	2.0 J
Anthracene	UG/L	-	5.0 U	5.0 U	7.5	5.0 U	3.2 J
Benzo(a)anthracene	UG/L	-	5.0 U				
Benzo(a)pyrene	UG/L	-	5.0 U				
Benzo(b)fluoranthene	UG/L	-	5.0 U				
Benzo(g,h,i)perylene	UG/L	-	5.0 U				
Benzo(k)fluoranthene	UG/L	-	5.0 U				
Chrysene	UG/L	-	5.0 U				
Dibenz(a,h)anthracene	UG/L	-	5.0 U				
Fluoranthene	UG/L	-	5.0 U				
Fluorene	UG/L	-	5.0 U	5.0 U	34.6	5.0 U	21.9
Indeno(1,2,3-cd)pyrene	UG/L	-	5.0 U				
Naphthalene	UG/L	-	5.0 U	5.0 U	838 D	5.0 U	118 D
Phenanthrene	UG/L	-	5.0 U	5.0 U	44.0	5.0 U	21.9
Pyrene	UG/L	-	5.0 U	5.0 U	2.9 J	5.0 U	5.0 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	1,164.7	ND	211.3

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria
J - The reported concentration is an estimated value.
U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.
D - Result reported from a secondary dilution analysis.
Made By:; Checked By:

Location ID			HIMW-028S
Sample ID	HIMW-28S		
Matrix	Groundwater		
Depth Interval (f	-		
Date Sampled			03/10/17
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Benzene	UG/L	-	4.7
Ethylbenzene	UG/L	-	76.7
Toluene	UG/L	-	1.0 U
Xylene (total)	UG/L	-	8.6
Total BTEX	UG/L	100	90
Semivolatile Organic Compounds			
2-Methylnaphthalene	UG/L	-	14.3
Acenaphthene	UG/L	-	32.6
Acenaphthylene	UG/L	-	2.1 J
Anthracene	UG/L	-	3.5 J
Benzo(a)anthracene	UG/L	-	5.0 U
Benzo(a)pyrene	UG/L	-	5.0 U
Benzo(b)fluoranthene	UG/L	-	5.0 U
Benzo(g,h,i)perylene	UG/L	-	5.0 U
Benzo(k)fluoranthene	UG/L	-	5.0 U
Chrysene	UG/L	-	5.0 U
Dibenz(a,h)anthracene	UG/L	-	5.0 U
Fluoranthene	UG/L	-	5.0 U
Fluorene	UG/L	-	24.0
ndeno(1,2,3-cd)pyrene	UG/L	-	5.0 U
Naphthalene	UG/L	-	129 D
Phenanthrene	UG/L	-	23.9
Pyrene	UG/L	-	5.0 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	229.4

*Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]boldsymbol{J}\,$ - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis.

Location ID			FIELDQC	FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID			ТВ	TB030917	TB20170310	FB-031317	TB031317
Matrix			Water Quality	Water Quality	Groundwater	Water Quality	Water Quality
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			03/07/17	03/09/17	03/10/17	03/13/17	03/13/17
Parameter	Units	Criteria*	Trip Blank (1-1)	Trip Blank (1-1)	Trip Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)
Volatile Organic Compounds							
Benzene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total BTEX	UG/L	100	ND	ND	ND	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	NA	NA	NA	5.0 U	NA
Acenaphthene	UG/L	-	NA	NA	NA	5.0 U	NA
Acenaphthylene	UG/L	-	NA	NA	NA	5.0 U	NA
Anthracene	UG/L	-	NA	NA	NA	5.0 U	NA
Benzo(a)anthracene	UG/L	-	NA	NA	NA	5.0 U	NA
Benzo(a)pyrene	UG/L	-	NA	NA	NA	5.0 U	NA
Benzo(b)fluoranthene	UG/L	-	NA	NA	NA	5.0 U	NA
Benzo(g,h,i)perylene	UG/L	-	NA	NA	NA	5.0 U	NA
Benzo(k)fluoranthene	UG/L	-	NA	NA	NA	5.0 U	NA
Chrysene	UG/L	-	NA	NA	NA	5.0 U	NA
Dibenz(a,h)anthracene	UG/L	-	NA	NA	NA	5.0 U	NA
Fluoranthene	UG/L	-	NA	NA	NA	5.0 U	NA
Fluorene	UG/L	-	NA	NA	NA	5.0 U	NA
Indeno(1,2,3-cd)pyrene	UG/L	-	NA	NA	NA	5.0 U	NA
Naphthalene	UG/L	-	NA	NA	NA	5.0 U	NA
Phenanthrene	UG/L	-	NA	NA	NA	5.0 U	NA
Pyrene	UG/L	-	NA	NA	NA	5.0 U	NA
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	NA	NA	NA	ND	NA

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

-lags assigne	d during	chemistry validation are shown
	\supset	Concentration Exceeds Criter
J - Not detect	ed abov	e the reported quantitation limit
Made Bv:	; Che	cked By:

ATTACHMENT A VALIDATED FORM 1'S

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-5S	Lab ID: 701	2857012	Collected: 03/09/1	7 11:10	Received: 03	3/09/17 16:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Meth	nod: EPA 8	270D Preparation Me	thod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1		03/15/17 20:07		
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 20:07	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/15/17 20:07		
2-Methylnaphthalene	<5.0	ug/L	5.0	1		03/15/17 20:07		
Naphthalene	<5.0	ug/L	5.0	1		03/15/17 20:07		
Phenanthrene	<5.0	ug/L	5.0	1		03/15/17 20:07		
Pyrene	<5.0	ug/L	5.0	1		03/15/17 20:07		
Surrogates		-3	5,5	·				
Nitrobenzene-d5 (S)	84	%.	35-114	1	03/13/17 09:13	03/15/17 20:07	4165-60-0	
2-Fluorobiphenyl (S)	76	%.	43-116	1	03/13/17 09:13	03/15/17 20:07	321-60-8	
p-Terphenyl-d14 (S)	47	%.	33-141	1	03/13/17 09:13	03/15/17 20:07	1718-51-0	
Phenol-d5 (S)	32	%.	10-110	1		03/15/17 20:07		
2-Fluorophenol (S)	42	%.	21-110	1		03/15/17 20:07		
2,4,6-Tribromophenol (S)	74	%.	10-123	1		03/15/17 20:07		
2-Chlorophenol-d4 (S)	70	%.	33-110	1		03/15/17 20:07		
1,2-Dichlorobenzene-d4 (S)	61	%.	16-110	1		03/15/17 20:07		
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 19:58	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 19:58	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 19:58	108-88-3	
Xylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/13/17 19:58	1330-20-7	
1,2-Dichloroethane-d4 (S)	89	%.	68-153	1		03/13/17 19:58	17060-07-0	
4-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 19:58		
Toluene-d8 (S)	97	%.	69-124	1		03/13/17 19:58		
roldelle de (e)	31	/ u.	00-124	'		00/10/1/ 19.00	2001-20-0	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-5I	Lab ID: 701	2857011	Collected: 03/09/1	7 09:50	Received: 03	3/09/17 16:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Meti	nod: EPA 82	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	12.5	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	83-32-9	
Acenaphthylene	144 🔘	ug/L	100	20	03/13/17 09:13	03/17/17 16:23	3 208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1		03/15/17 19:39		
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:39	206-44-0	
Fluorene	30.0	ug/L	5.0	1	03/13/17 09:13			
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1 =	03/13/17 09:13			
2-Methylnaphthalene	172	_	100	20	03/13/17 09:13			
Naphthalene	1080 👸	ug/L	100	20	03/13/17 09:13	03/17/17 16:23	91-20-3	
Phenanthrene	18.6	ug/L	5.0	1	03/13/17 09:13			
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13		-	
Surrogates		-3-						
Nitrobenzene-d5 (S)	60	%.	35-114	1	03/13/17 09:13	03/15/17 19:39	4165-60-0	
2-Fluorobiphenyl (S)	75	%.	43-116	1	03/13/17 09:13	03/15/17 19:39	321-60-8	
p-Terphenyl-d14 (S)	67	%.	33-141	1	03/13/17 09:13	03/15/17 19:39	1718-51-0	
Phenol-d5 (S)	30	%.	10-110	1	03/13/17 09:13	03/15/17 19:39	4165-62-2	
2-Fluorophenol (S)	45	%.	21-110	1	03/13/17 09:13	03/15/17 19:39	367-12-4	
2,4,6-Tribromophenol (S)	72	%.	10-123	1	03/13/17 09:13			
2-Chlorophenol-d4 (S)	67	%.	33-110	1	03/13/17 09:13			
1,2-Dichlorobenzene-d4 (S)	57	% .	16-110	1	03/13/17 09:13	03/15/17 19:39	2199-69-1	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Benzene	2.1	ug/L	1.0	1		03/13/17 20:18	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 20:18	100-41-4	
l'oluene	<1.0	ug/L	1.0	1		03/13/17 20:18	108-88-3	
(ylene (Total) S urrogates	71.8	ug/L	1.0	1		03/13/17 20:18		
,2-Dichloroethane-d4 (S)	90	%.	68-153	1		03/13/17 20:18	17060-07-0	
I-Bromofluorobenzene (S)	100	%.	79-124	1		03/13/17 20:18	460-00-4	
Toluene-d8 (S)	95	%.	69-124	1		03/13/17 20:18		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-5D	Lab ID: 7012	2857010	Collected: 03/09/1	7 08:15	Received: 03	3/09/17 16:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Meth	od: EPA 82	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	3.4J	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 83-32-9	
Acenaphthylene	56.6	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1		03/15/17 19:12		
Benzo(g,h,i)perylene	<5.0 ₂₀	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 19:12	2 206-44-0	
Fluorene	8.2	ug/L	5.0	1		03/15/17 19:12		
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/15/17 19:12		
2-Methylnaphthalene	166	ug/L	100	20		03/17/17 15:55		
Naphthalene	1350 📆		100	20		03/17/17 15:55		
Phenanthrene	<5.0	ug/L	5.0	1		03/15/17 19:12		
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Surrogates		·						
Nitrobenzene-d5 (S)	64	%.	35-114	1	03/13/17 09:13	03/15/17 19:12	4165-60-0	
2-Fluorobiphenyl (S)	76	%.	43-116	1	03/13/17 09:13	03/15/17 19:12	321-60-8	
o-Terphenyl-d14 (S)	76	%.	33-141	1	03/13/17 09:13			
Phenol-d5 (S)	31	%.	10-110	1	03/13/17 09:13	03/15/17 19:12	4165-62-2	
2-Fluorophenol (S)	45	%.	21-110	1	03/13/17 09:13	03/15/17 19:12	367-12-4	
2,4,6-Tribromophenol (S)	71	%.	10-123	1	03/13/17 09:13	03/15/17 19:12	118-79-6	
2-Chlorophenol-d4 (S)	71	%.	33-110	1	03/13/17 09:13			
1,2-Dichlorobenzene-d4 (S)	57	%.	16-110	1	03/13/17 09:13			
3260C Volatile Organics	Analytical Meth	od: EPA 82	60C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 20:39	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 20:39	100-41-4	
Toluene	4.8	ug/L	1.0	1		03/13/17 20:39	108-88-3	
Kylene (Total) S <i>urrogate</i> s	91.3	ug/L	1.0	1		03/13/17 20:39		
I,2-Dichloroethane-d4 (S)	87	%.	68-153	1		03/13/17 20:39	17060-07-0	
I-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 20:39	· · · · · -	
Foluene-d8 (S)	96	%.	69-124	1		03/13/17 20:39		

REPORT OF LABORATORY ANALYSIS

Project: National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-8S	Lab ID: 701	2857014	Collected: 03/08/1	17 09:20	Received: 03	3/09/17 16:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 8	270D Preparation Me	ethod: E	PA 3510C			
Acenaphthene	1.6J	ug/L	5.0	1	03/13/17 09:13	03/20/17 20:25	83-32-9	
Acenaphthylene	4.7J	ug/L	5.0	1	03/13/17 09:13	03/20/17 20:25	208-96-8	
Anthracene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Benzo(a)anthracene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Benzo(a)pyrene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Benzo(g,h,i)perylene	< 5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 20:25	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 20:25	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Fluoranthene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Fluorene	1.1J	ug/L	5.0	1		03/20/17 20:25		
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/20/17 20:25		
2-Methylnaphthalene	1.5J	ug/L	5.0	1		03/20/17 20:25		
Naphthalene	28.7	ug/L	5.0	1		03/20/17 20:25		
Phenanthrene	2.2J	ug/L	5.0	1		03/20/17 20:25		
Pyrene	<5.0	ug/L	5.0	1		03/20/17 20:25		
Surrogates		•		-			.20 00 0	
Nitrobenzene-d5 (S)	84	%.	35-114	1	03/13/17 09:13	03/20/17 20:25	4165-60-0	
2-Fluorobiphenyl (S)	80	%.	43-116	1	03/13/17 09:13	03/20/17 20:25	321-60-8	
o-Terphenyl-d14 (S)	92	%.	33-141	1	03/13/17 09:13	03/20/17 20:25	1718-51-0	
Phenol-d5 (S)	35	%.	10-110	1		03/20/17 20:25		
2-Fluorophenol (S)	49	%.	21-110	1	03/13/17 09:13	03/20/17 20:25	367-12-4	
2,4,6-Tribromophenol (S)	87	%.	10-123	1	03/13/17 09:13	03/20/17 20:25	118-79-6	
2-Chlorophenol-d4 (S)	75	%.	33-110	1		03/20/17 20:25		
1,2-Dichlorobenzene-d4 (S)	58	%.	16-110	1		03/20/17 20:25		
3260C Volatile Organics	Analytical Meth	od: EPA 82	60C/5030C					
Benzene	26.0	ug/L	1.0	1		03/13/17 19:17	71-43-2	
Ethylbenzene	7.5	ug/L	1.0	1		03/13/17 19:17		
oluene	5.1	ug/L	1.0	1		03/13/17 19:17		
(ylene (Total) Surrogates	20.3	ug/L	1.0	1		03/13/17 19:17	·	
,2-Dichloroethane-d4 (S)	91	%.	68-153	1		03/13/17 19:17	17060-07-0	
-Bromofluorobenzene (S)	100	%.	79-124	1		03/13/17 19:17		
Toluene-d8 (S)	97	%.	69-124	1		03/13/17 19:17		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: DUP20170308	Lab ID: 701	2857017	Collected: 03/08/1	7 07:00	Received: 03	/09/17 16:00 N	/latrix: Water	
HIMW - 008S Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 8	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	1.1J	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	83-32-9	
Acenaphthylene	3.5J	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	91-57-6	
Naphthalene	13.3	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:58	91-20-3	
Phenanthrene	1.8J	ug/L	5.0	1		03/20/17 19:58		
Pyrene	<5.0	ug/L	5.0	1		03/20/17 19:58		
Surrogates		~g, ~		•				
Nitrobenzene-d5 (S)	74	%.	35-114	1	03/13/17 09:13	03/20/17 19:58	4165-60-0	
2-Fluorobiphenyl (S)	74	%.	43-116	1	03/13/17 09:13	03/20/17 19:58	321-60-8	
p-Terphenyl-d14 (S)	89	%.	33-141	1	03/13/17 09:13	03/20/17 19:58	1718-51-0	
Phenol-d5 (S)	30	%.	10-110	1	03/13/17 09:13	03/20/17 19:58	4165-62-2	
2-Fluorophenol (S)	42	%.	21-110	1		03/20/17 19:58		
2,4,6-Tribromophenol (S)	83	%.	10-123	1		03/20/17 19:58		
2-Chlorophenol-d4 (S)	65	%.	33-110	1		03/20/17 19:58		
1,2-Dichlorobenzene-d4 (S)	52	%.	16-110	1		03/20/17 19:58		
8260C Volatile Organics	Analytical Meti	nod: EPA 8	260C/5030C					
Benzene	31.1	ug/L	1.0	1		03/13/17 18:17	71-43-2	
Ethylbenzene	9.7	ug/L	1.0	1		03/13/17 18:17	100-41-4	
Toluene	7.0	ug/L	1.0	1		03/13/17 18:17	108-88-3	
Xylene (Total)	27.1	ug/L	1.0	1		03/13/17 18:17	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	89	%.	68-153	1		03/13/17 18:17		
4-Bromofluorobenzene (S)	102	% .	79-124	1		03/13/17 18:17		
Toluene-d8 (S)	98	% .	69-124	1		03/13/17 18:17	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-8I	Lab ID: 7	012857015	Collected: 03/08/1	7 11:55	Received: 03	3/09/17 16:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical M	lethod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:40	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Surrogates		J						
Nitrobenzene-d5 (S)	71	%.	35-114	1	03/13/17 09:13	03/20/17 17:40	4165-60-0	
2-Fluorobiphenyl (S)	68	% .	43-116	1	03/13/17 09:13	03/20/17 17:40	321-60-8	
p-Terphenyl-d14 (S)	86	%.	33-141	1	03/13/17 09:13	03/20/17 17:40	1718-51-0	
Phenol-d5 (S)	30	%.	10-110	1	03/13/17 09:13	03/20/17 17:40	4165-62-2	
2-Fluorophenol (S)	42	%.	21-110	1	03/13/17 09:13	03/20/17 17:40	367-12-4	
2,4,6-Tribromophenol (S)	71	%.	10-123	1	03/13/17 09:13	03/20/17 17:40	118-79-6	
2-Chlorophenol-d4 (S)	63	%.	33-110	1	03/13/17 09:13	03/20/17 17:40	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	52	%.	16-110	1	03/13/17 09:13	03/20/17 17:40	2199-69-1	
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 18:57	7 71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 18:57	7 100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 18:57	7 108-88-3	
Xylene (Total) <i>Surrogate</i> s	<1.0	ug/L	1.0	1		03/13/17 18:57	1330-20-7	
1,2-Dichloroethane-d4 (S)	87	%.	68-153	1		03/13/17 18:57	7 17060-07-0	
4-Bromofluorobenzene (S)	100	%.	79-124	1		03/13/17 18:57	460-00-4	
Toluene-d8 (S)	99	%.	69-124	1		03/13/17 18:57	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-8D	Lab ID: 701	2857016	Collected: 03/08/1	7 14:50	Received: 03	/09/17 16:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	od: EPA 8	270D Preparation Me	thod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1		03/20/17 18:07		
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:07	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1		03/20/17 18:07		
Naphthalene	<5.0	ug/L	5.0	1		03/20/17 18:07		
Phenanthrene	<5.0	ug/L	5.0	1		03/20/17 18:07		
Pyrene	<5.0	ug/L	5.0	1		03/20/17 18:07		
Surrogates			0.0	,	00.10.11.00.10	00.20		
Nitrobenzene-d5 (S)	73	%.	35-114	1	03/13/17 09:13	03/20/17 18:07	4165-60-0	
2-Fluorobiphenyl (S)	69	%.	43-116	1	03/13/17 09:13	03/20/17 18:07	321-60-8	
p-Terphenyl-d14 (S)	89	%.	33-141	1	03/13/17 09:13	03/20/17 18:07	1718-51-0	
Phenoi-d5 (S)	29	%.	10-110	1		03/20/17 18:07		
2-Fluorophenol (S)	42	%.	21-110	1		03/20/17 18:07		
2,4,6-Tribromophenol (S)	76	%.	10-123	1		03/20/17 18:07		
2-Chlorophenol-d4 (S)	63	%.	33-110	1		03/20/17 18:07		
1,2-Dichlorobenzene-d4 (S)	55	%.	16-110	1		03/20/17 18:07		
8260C Volatile Organics	Analytical Meth	od: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 18:37	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 18:37	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 18:37	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 18:37	1330-20-7	
Surrogates	07	0.4	00.450	4		00/40/47 40:07	47000 07 0	
1,2-Dichloroethane-d4 (S)	87	%. "	68-153	1		03/13/17 18:37		
4-Bromofluorobenzene (S)	100	% .	79-124	1		03/13/17 18:37		
Toluene-d8 (S)	98	% .	69-124	1		03/13/17 18:37	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-12S	Lab ID:	7012857004	Collected: 03/07	/17 14:00	Received: 0	3/07/17 15:28	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical I	Method: EPA 82	270D Preparation N	/lethod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 19:36	6 83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 19:36	6 208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 19:36	5 120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1		03/10/17 19:36		
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 19:36	5 50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1		03/10/17 19:36		
Benzo(g,h,i)perylene	<5.0	_	5.0	1		03/10/17 19:36		
Benzo(k)fluoranthene	<5.0	_	5.0	1		03/10/17 19:36		
Chrysene	<5.0	_	5.0			03/10/17 19:36		
Dibenz(a,h)anthracene	<5.0	_	5.0			03/10/17 19:36		
Fluoranthene	<5.0	_	5.0			03/10/17 19:36		
Fluorene	<5.0		5.0			03/10/17 19:36		
ndeno(1,2,3-cd)pyrene	<5.0	•	5.0	-		03/10/17 19:36		
2-Methylnaphthalene	<5.0		5.0			03/10/17 19:36		
Naphthalene	<5.0	3	5.0			03/10/17 19:36		
Phenanthrene	<5.0	-3	5.0			03/10/17 19:36		
Pyrene	<5.0	- 3 -	5.0			03/10/17 19:36		
Surrogates	-5.5	- Ug/ L	0.0	'	03/03/17 03.12	03/10/1/ 19.30	125-00-0	
Nitrobenzene-d5 (S)	92	%.	35-114	1	03/09/17 09:12	03/10/17 19:36	4165-60-0	
2-Fluorobiphenyl (S)	81	%.	43-116	-		03/10/17 19:36		
o-Terphenyl-d14 (S)	72		33-141			03/10/17 19:36		
Phenol-d5 (S)	36		10-110			03/10/17 19:36		
2-Fluorophenol (S)	52		21-110			03/10/17 19:36		
2,4,6-Tribromophenol (S)	75		10-123			03/10/17 19:36		
2-Chlorophenol-d4 (S)	79		33-110			03/10/17 19:36		
1,2-Dichlorobenzene-d4 (S)	60		16-110			03/10/17 19:36		
3260C Volatile Organics	Analytical N	/lethod: EPA 82	60C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 09:08	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 09:08	100-41-4	
l'oluene	<1.0	ug/L	1.0	1		03/13/17 09:08	108-88-3	
Kylene (Total) S <i>urrogates</i>	<1.0	ug/L	1.0	1		03/13/17 09:08		
1,2-Dichloroethane-d4 (S)	95	%.	CD 450	4		00/40/47 00 00	47000 07 6	
I-Bromofluorobenzene (S)			68-153			03/13/17 09:08		
Foluene-d8 (S)	102		79-124			03/13/17 09:08		
ioluerie-uo (3)	90	%.	69-124	1		03/13/17 09:08	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-13I	Lab ID:	7012857002	Collected: 03/07	/17 10:55	Received: 03	3/07/17 15:28	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical I	Method: EPA 82	270D Preparation !	/lethod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0) 1	03/09/17 09:12	03/10/17 18:41	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:41	208-96-8	
Anthracene	< 5.0	ug/L	5.0) 1		03/10/17 18:41		
Benzo(a)anthracene	<5.0	ug/L	5.0	1		03/10/17 18:41		
Benzo(a)pyrene	<5.0	ug/L	5.0	1		03/10/17 18:41		
Benzo(b)fluoranthene	<5.0		5.0			03/10/17 18:41		
Benzo(g,h,i)perylene	<5.0	_	5.0		The second secon	03/10/17 18:41		
Benzo(k)fluoranthene	<5.0	•	5.0			03/10/17 18:41		
Chrysene	<5.0		5.0			03/10/17 18:41		
Dibenz(a,h)anthracene	<5.0		5.0			03/10/17 18:41		
Fluoranthene	<5.0	-5	5.0			03/10/17 18:41		
Fluorene	<5.0		5.0			03/10/17 18:41		
Indeno(1,2,3-cd)pyrene	<5.0	-3	5.0			03/10/17 18:41		
2-Methylnaphthalene	<5.0		5.0			03/10/17 18:41		
Naphthalene	<5.0		5.0			03/10/17 18:41		
Phenanthrene	<5.0	3	5.0					
Pyrene	<5.0	- 5	5.0			03/10/17 18:41		
Surrogates	~5.0	ug/L	3.0	'	03/09/17 09:12	03/10/17 18:41	129-00-0	
Nitrobenzene-d5 (S)	94	· %.	35-114	1	03/00/17 00:12	03/10/17 18:41	4165 60 0	
2-Fluorobiphenyl (S)	86		43-116			03/10/17 18:41		
p-Terphenyl-d14 (S)	96		33-141	•		03/10/17 18:41		
Phenol-d5 (S)	36		10-110	•		03/10/17 18:41	•	
2-Fluorophenol (S)	52		21-110					
2,4,6-Tribromophenol (S)	80		10-123	-		03/10/17 18:41		
2-Chlorophenol-d4 (S)	80		33-110			03/10/17 18:41		
1,2-Dichlorobenzene-d4 (S)	66	•	16-110	•		03/10/17 18:41		
B260C Volatile Organics				•	03/09/17 09:12	03/10/17 18:41	2199-69-1	
-		/lethod: EPA 82						
Benzene	<1.0	3	1.0			03/13/17 09:55		
Ethylbenzene	<1.0	-3	1.0			03/13/17 09:55		
Toluene	<1.0	3	1.0	1		03/13/17 09:55	108-88-3	
(ylene (Total) S <i>urrogate</i> s	<1.0	ug/L	1.0	1		03/13/17 09:55	1330-20-7	
I,2-Dichloroethane-d4 (S)	98	%.	68-153	1		03/13/17 09:55	17060-07-0	
I-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 09:55		
Toluene-d8 (S)	92		69-124	1		03/13/17 09:55		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-13D	Lab ID: 70	012857005	Collected: 03/07/1	7 13:15	Received: 03	3/07/17 15:28	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical M	ethod: EPA 82	270D Preparation Me	ethod: El	PA 3510C			I.T.
Acenaphthene	5.1	ug/L	5.0	1	03/09/17 09:12	03/10/17 20:04	83-32-9	
Acenaphthylene	8.6	ug/L	5.0	1	03/09/17 09:12	03/10/17 20:04	208-96-8	
Anthracene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Benzo(a)anthracene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Benzo(a)pyrene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Chrysene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Fluoranthene	<5.0	ug/L	5.0	1		03/10/17 20:04		
Fluorene	<5.0	ug/L	5.0	1		03/10/17 20:04		
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/10/17 20:04		
2-Methylnaphthalene	<5.0	ug/L	5.0	1		03/10/17 20:04	· •	
Naphthalene	<5.0	ug/L ug/L	5.0	1		03/10/17 20:04		
Phenanthrene	<5.0	ug/L	5.0	1				
Pyrene	<5.0	ug/L ug/L	5.0 5.0	1		03/10/17 20:04		
Surrogates	70.0	ug/L	3.0	'	03/09/17 09:12	03/10/17 20:04	129-00-0	
Nitrobenzene-d5 (S)	94	%.	35-114	1	03/00/17 00:12	03/10/17 20:04	4465 60 0	
2-Fluorobiphenyl (S)	84	%.	43-116	1		03/10/17 20:04		
p-Terphenyl-d14 (S)	94	%.	33-141	1		03/10/17 20:04		
Phenol-d5 (S)	35	%.	10-110	1				
2-Fluorophenol (S)	52	%. %.	21-110	1		03/10/17 20:04		
2,4,6-Tribromophenol (S)	84	%. %.		-		03/10/17 20:04		
2-Chlorophenol-d4 (S)	78	%. %.	10-123	1		03/10/17 20:04		
1,2-Dichlorobenzene-d4 (S)			33-110	1		03/10/17 20:04		
,	67	%.	16-110	1	03/09/17 09:12	03/10/17 20:04	2199-69-1	
3260C Volatile Organics	Analytical Me	thod: EPA 82	60C/5030C					
Benzene	2.1	ug/L	1.0	1		03/13/17 08:45	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 08:45	100-41-4	
l'oluene	<1.0	ug/L	1.0	1		03/13/17 08:45		
Kylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/13/17 08:45		
,2-Dichloroethane-d4 (S)	97	%.	68-153	1		03/13/17 08:45	17060-07-0	
I-Bromofluorobenzene (S)	102	%.	79-124	1		03/13/17 08:45		
「oluene-d8 (S)	88	%.	69-124	1		03/13/17 08:45		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Sample: HIMW-14I	Lab ID: 701	2857001	Collected: 03/07/1	7 10:10	Received: 03	3/07/17 15:28	Matrix: Water	<u>, </u>
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Metl	nod: EPA 82	270D Preparation Me	thod: E	PA 3510C		_	
Acenaphthene	9.1	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	83-32-9	
Acenaphthylene	10.2	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	208-96-8	
Anthracene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/09/17 09:12	03/10/17 18:13	207-08-9	
Chrysene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Fluoranthene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Fluorene	2.7J	ug/L	5.0	1		03/10/17 18:13		
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/10/17 18:13		
2-Methylnaphthalene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Naphthalene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Phenanthrene	3.2J	ug/L	5.0	1		03/10/17 18:13		
Pyrene	<5.0	ug/L	5.0	1		03/10/17 18:13		
Surrogates		•		•			0 00 0	
Nitrobenzene-d5 (S)	104	%.	35-114	1	03/09/17 09:12	03/10/17 18:13	4165-60-0	
2-Fluorobiphenyl (S)	92	%.	43-116	1	03/09/17 09:12	03/10/17 18:13	321-60-8	
p-Terphenyl-d14 (S)	90	%.	33-141	1	03/09/17 09:12	03/10/17 18:13	1718-51-0	
Phenol-d5 (S)	40	%.	10-110	1		03/10/17 18:13		
2-Fluorophenol (S)	59	%.	21-110	1	03/09/17 09:12	03/10/17 18:13	367-12-4	
2,4,6-Tribromophenol (S)	. 85	%.	10-123	1		03/10/17 18:13		
2-Chlorophenol-d4 (S)	89	%.	33-110	1		03/10/17 18:13		
1,2-Dichlorobenzene-d4 (S)	70	%.	16-110	1		03/10/17 18:13		
3260C Volatile Organics	Analytical Meth	od: EPA 82	60C/5030C					
Benzene	4.1	ug/L	1.0	1		03/13/17 12:28	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 12:28	100-41-4	
l'oluene	<1.0	ug/L	1.0	1		03/13/17 12:28		
(ylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/13/17 12:28		
l,2-Dichloroethane-d4 (S)	90	%.	68-153	1		03/13/17 12:28	17060-07-0	
I-Bromofluorobenzene (S)	107	%.	79-124	1		03/13/17 12:28		
Toluene-d8 (S)	93	%.	69-124	1		03/13/17 12:28		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-15I	Lab ID: 701	2857008	Collected: 03/08/1	7 10:30	Received: 03	/09/17 16:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 8	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	83-32-9	
Acenaphthylene	5.3	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	.1	03/13/17 09:13	03/15/17 18:16	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	86-73-7	
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:16	129-00-0	
Surrogates		_						
Nitrobenzene-d5 (S)	71	%.	35-114	1	03/13/17 09:13	03/15/17 18:16	4165-60-0	
2-Fluorobiphenyl (S)	66	%.	43-116	1	03/13/17 09:13	03/15/17 18:16	321-60-8	
p-Terphenyl-d14 (S)	78	% .	33-141	1	03/13/17 09:13	03/15/17 18:16	1718-51-0	
Phenol-d5 (S)	29	%.	10-110	1	03/13/17 09:13	03/15/17 18:16	4165-62-2	
2-Fluorophenol (S)	40	%.	21-110	1	03/13/17 09:13	03/15/17 18:16	367-12-4	
2,4,6-Tribromophenol (S)	72	% .	10-123	1	03/13/17 09:13	03/15/17 18:16	118-79-6	
2-Chlorophenol-d4 (S)	60	%.	33-110	1	03/13/17 09:13	03/15/17 18:16	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	49	%.	16-110	1	03/13/17 09:13	03/15/17 18:16	2199-69-1	
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
Benzene	1.5	ug/L	1.0	1		03/13/17 21:19	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 21:19	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 21:19	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 21:19	1330-20-7	
Surrogates	^^	0/	00.450			00/40/47 04:40	47000 07 0	
1,2-Dichloroethane-d4 (S)	90	%.	68-153	1		03/13/17 21:19		
4-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 21:19		
Toluene-d8 (S)	97	%.	69-124	1		03/13/17 21:19	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-15D	Lab ID: 701	2857007	Collected: 03/08/1	7 09:00	Received: 03	/09/17 16:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Met	hod: EPA 8	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 17:49	129-00-0	
S <i>urr</i> ogates		=						
Nitrobenzene-d5 (S)	75	%.	35-114	1	03/13/17 09:13	03/15/17 17:49	4165-60-0	
2-Fluorobiphenyl (S)	69	%.	43-116	1	03/13/17 09:13	03/15/17 17:49	321-60-8	95
p-Terphenyl-d14 (S)	71	%.	33-141	1	03/13/17 09:13	03/15/17 17:49	1718-51-0	
Phenol-d5 (S)	28	%.	10-110	1	03/13/17 09:13	03/15/17 17:49	4165-62-2	
2-Fluorophenol (S)	42	%.	21-110	1	03/13/17 09:13	03/15/17 17:49	367-12-4	
2,4,6-Tribromophenol (S)	69	%.	10-123	1	03/13/17 09:13	03/15/17 17:49	118-79-6	
2-Chiorophenol-d4 (S)	65	%.	33-110	1	03/13/17 09:13	03/15/17 17:49	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	54	%.	16-110	1	03/13/17 09:13	03/15/17 17:49	2199-69-1	
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 21:39	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 21:39	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 21:39	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 21:39	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	88	%.	68-153	1		03/13/17 21:39		
4-Bromofluorobenzene (S)	100	%.	79-124	1		03/13/17 21:39		
Toluene-d8 (S)	96	%.	69-124	1		03/13/17 21:39	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Date: 03/20/2017 04:54 PM

Sample: HIMW-20S	Lab ID: 701	3228003	Collected: 03/10/1	7 13:05	Received: 03	/10/17 14:08 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
B270 MSSV	Analytical Met	hod: EPA 8	270D Preparation Me	thod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:02	129-00-0	
Surrogates		•						
Nitrobenzene-d5 (S)	78	%.	35-114	1	03/15/17 09:45	03/20/17 13:02	4165-60-0	
2-Fluorobiphenyl (S)	74	%.	43-116	1	03/15/17 09:45	03/20/17 13:02	321-60-8	
p-Terphenyl-d14 (S)	82	%.	33-141	1	03/15/17 09:45	03/20/17 13:02	1718-51-0	
Phenol-d5 (S)	31	%.	10-110	1	03/15/17 09:45	03/20/17 13:02	4165-62-2	
2-Fluorophenol (S)	46	%.	21-110	1	03/15/17 09:45	03/20/17 13:02	367-12-4	
2,4,6-Tribromophenol (S)	74	%.	10-123	1	03/15/17 09:45	03/20/17 13:02	118-79-6	
2-Chlorophenol-d4 (S)	70	%.	33-110	1	03/15/17 09:45	03/20/17 13:02	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	61	%.	16-110	1	03/15/17 09:45	03/20/17 13:02	2199-69-1	
8260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/16/17 20:04	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 20:04	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 20:04	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/16/17 20:04	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	85	%.	68-153	1		03/16/17 20:04		
4-Bromofluorobenzene (S)	104	%.	79-124	1		03/16/17 20:04	460-00-4	
Toluene-d8 (S)	98	%.	69-124	1		03/16/17 20:04	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/20/2017 04:54 PM

7013228

Sample: HIMW-20I	Lab ID: 701	3228002	Collected: 03/10/1	7 11:25	Received: 03	/10/17 14:08 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Met	hod: EPA 82	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1		03/20/17 12:35		
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	207-08-9	
Chrysene	<5.0	ug/L	5.0	1		03/20/17 12:35		
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	206-44-0	
Fluorene	<5.0	ug/L	5.0	1		03/20/17 12:35		
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1		03/20/17 12:35		
Phenanthrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:35	85-01-8	
Pyrene	<5.0	ug/L	5.0	1		03/20/17 12:35		
Surrogates		_						
Nitrobenzene-d5 (S)	66	%.	35-114	1	03/15/17 09:45	03/20/17 12:35	4165-60-0	
2-Fluorobiphenyl (S)	63	%.	43-116	1	03/15/17 09:45	03/20/17 12:35	321-60-8	
p-Terphenyl-d14 (S)	76	%.	33-141	1	03/15/17 09:45	03/20/17 12:35	1718-51-0	
Phenol-d5 (S)	24	%.	10-110	₀ 1	03/15/17 09:45	03/20/17 12:35	4165-62-2	
2-Fluorophenol (S)	35	%.	21-110	1	03/15/17 09:45	03/20/17 12:35	367-12-4	
2,4,6-Tribromophenol (S)	70	%.	10-123	1	03/15/17 09:45	03/20/17 12:35	118-79-6	
2-Chlorophenol-d4 (S)	58	%.	33-110	1	03/15/17 09:45	03/20/17 12:35	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	50	%.	16-110	1	03/15/17 09:45	03/20/17 12:35	2199-69-1	
8260C Volatile Organics	Analytical Met	nod: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	⁵ 1.0	1		03/16/17 20:24	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 20:24	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 20:24	108-88-3	
Xylene (Total) <i>Surrogates</i>	<1.0	ug/L	1.0	1		03/16/17 20:24	1330-20-7	
1,2-Dichloroethane-d4 (S)	91	%.	68-153	1		03/16/17 20:24	17060-07-0	
4-Bromofluorobenzene (S)	106	%.	79-124	1		03/16/17 20:24	460-00-4	
Toluene-d8 (S)	97	%.	69-124	1		03/16/17 20:24		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Date: 03/20/2017 04:54 PM

Sample: HIMW-22	Lab ID: 701:	3228006	Collected: 03/13/1	7 09:05	Received: 03	3/13/17 15:24 N	//atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	od: EPA 8	270D Preparation Me	ethod: Ei	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1		03/20/17 13:58		
Chrysene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	86-73-7	
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1		03/20/17 13:58		
Phenanthrene	<5.0	ug/L	5.0	1		03/20/17 13:58		
Pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:58	129-00-0	
Surrogates		-						
Nitrobenzene-d5 (S)	79	%.	35-114	1	03/15/17 09:45	03/20/17 13:58	4165-60-0	
2-Fluorobiphenyl (S)	76	%.	43-116	1	03/15/17 09:45	03/20/17 13:58	321-60-8	
p-Terphenyl-d14 (S)	82	%.	33-141	1	03/15/17 09:45	03/20/17 13:58	1718-51-0	
Phenol-d5 (S)	31	%.	10-110	1	03/15/17 09:45	03/20/17 13:58	4165-62-2	
2-Fluorophenol (S)	47	%.	21-110	1	03/15/17 09:45	03/20/17 13:58	367-12-4	
2,4,6-Tribromophenol (S)	77	%.	10-123	1	03/15/17 09:45	03/20/17 13:58	118-79-6	
2-Chlorophenol-d4 (S)	73	%.	33-110	1	03/15/17 09:45	03/20/17 13:58	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	62	%.	16-110	1		03/20/17 13:58		
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/16/17 19:03	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 19:03	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 19:03	108-88-3	
(ylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/16/17 19:03	1330-20-7	
I,2-Dichloroethane-d4 (S)	89	%.	68-153	1		03/16/17 19:03	17060-07-0	
I-Bromofluorobenzene (S)	99	%.	79-124	1		03/16/17 19:03		
Toluene-d8 (S)	96	%.	69-124	1		03/16/17 19:03		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-23	Lab ID: 7	012857009	Collected: 03/08/1	7 13:05	Received: 03	//09/17 16:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical M	ethod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/15/17 18:44	129-00-0	
Surrogates		•						
Nitrobenzene-d5 (S)	80	%.	35-114	1	03/13/17 09:13	03/15/17 18:44	4165-60-0	
2-Fluorobiphenyl (S)	72	%.	43-116	1	03/13/17 09:13	03/15/17 18:44	321-60-8	
p-Terphenyl-d14 (S)	66	%.	33-141	1	03/13/17 09:13	03/15/17 18:44	1718-51-0	
Phenol-d5 (S)	30	%.	10-110	1	03/13/17 09:13	03/15/17 18:44	4165-62-2	
2-Fluorophenol (S)	44	%.	21-110	1	03/13/17 09:13	03/15/17 18:44	367-12-4	
2,4,6-Tribromophenol (S)	64	%.	10-123	1	03/13/17 09:13	03/15/17 18:44	118-79-6	
2-Chlorophenol-d4 (S)	65	%.	33-110	1	03/13/17 09:13	03/15/17 18:44	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	55	%.	16-110	1	03/13/17 09:13	03/15/17 18:44	2199-69-1	
8260C Volatile Organics	Analytical M	ethod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 20:59	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 20:59	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 20:59	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 20:59	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	85	% .	68-153	1		03/13/17 20:59	17060-07-0	
4-Bromofluorobenzene (S)	100	% .	79-124	1		03/13/17 20:59		
Toiuene-d8 (S)	99	%.	69-124	1		03/13/17 20:59	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-24	Lab ID: 701	2857020	Collected: 03/09/1	7 13:20	Received: 03	3/09/17 16:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meti	nod: EPA 82	70D Preparation Me	ethod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1		03/20/17 19:30		
Acenaphthylene	5.8	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	193-39-5	
2-Methylnaphthalene	12.3	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	91-57-6	
Naphthalene	167 🎵	ug/L	25.0	5	03/13/17 09:13	03/21/17 16:50	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:30	129-00-0	
Surrogates		ŭ						
Nitrobenzene-d5 (S)	76	%.	35-114	1	03/13/17 09:13	03/20/17 19:30	4165-60-0	
2-Fluorobiphenyl (S)	73	% .	43-116	1	03/13/17 09:13	03/20/17 19:30	321-60-8	
p-Terphenyl-d14 (S)	81	%.	33-141	1	03/13/17 09:13	03/20/17 19:30	1718-51-0	
Phenol-d5 (S)	30	% .	10-110	1	03/13/17 09:13	03/20/17 19:30	4165-62-2	
2-Fluorophenol (S)	45	%.	21-110	1	03/13/17 09:13	03/20/17 19:30	367-12-4	
2,4,6-Tribromophenol (S)	80	%.	10-123	1	03/13/17 09:13	03/20/17 19:30	118-79-6	
2-Chlorophenol-d4 (S)	69	%.	33-110	1	03/13/17 09:13	03/20/17 19:30	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	59	%.	16-110	1	03/13/17 09:13	03/20/17 19:30	2199-69-1	
8260C Volatile Organics	Analytical Met	nod: EPA 82	60C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 17:16	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 17:16	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 17:16	108-88-3	
Xylene (Total)	6.7	ug/L	1.0	1		03/13/17 17:16	1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	91	%.	68-153	1		03/13/17 17:16	17060-07-0	
4-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 17:16	460-00-4	
Toluene-d8 (S)	99	%.	69-124	1		03/13/17 17:16	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Sample: HIMW-25	Lab ID:	7012857003	Collected:	03/07/	17 12:30	Received: 0	3/07/17 15:28	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical M	Method: EPA 82	270D Prepara	ation Mo	ethod: El	PA 3510C			
Acenaphthene	<5.0	ug/L		5.0	1	03/09/17 09:12	03/10/17 19:09	83-32-9	
Acenaphthylene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Anthracene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Benzo(a)anthracene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Benzo(a)pyrene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Benzo(b)fluoranthene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Benzo(g,h,i)perylene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Benzo(k)fluoranthene	<5.0	ug/L		5.0	a 4		03/10/17 19:09		
Chrysene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Dibenz(a,h)anthracene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Fluoranthene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Fluorene	<5.0	_		5.0	1		03/10/17 19:09		
ndeno(1,2,3-cd)pyrene	<5.0	-		5.0	1		03/10/17 19:09		
2-Methylnaphthalene	<5.0	-		5.0	1		03/10/17 19:09		
Naphthalene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Phenanthrene	<5.0	ug/L		5.0	1		03/10/17 19:09		
^o yrene	<5.0	ug/L		5.0	1		03/10/17 19:09		
Surrogates		•			•	00.00777 00.12	00/10/11 10:00	123-00-0	
Nitrobenzene-d5 (S)	83	%.	3	5-114	1	03/09/17 09:12	03/10/17 19:09	4165-60-0	
?-Fluorobiphenyl (S)	74	% .	4	3-116	1		03/10/17 19:09		
-Terphenyl-d14 (S)	92	%.	3	3-141	1		03/10/17 19:09		
Phenol-d5 (S)	30	%.	1	0-110	1		03/10/17 19:09		
-Fluorophenol (S)	43	%.	2	1-110	1		03/10/17 19:09		
4,4,6-Tribromophenol (S)	67	%.	1	0-123	1		03/10/17 19:09		
-Chlorophenol-d4 (S)	67	% .	3	3-110	1		03/10/17 19:09		
,2-Dichlorobenzene-d4 (S)	56	%.		6-110	1	03/09/17 09:12	03/10/17 19:09	2199-69-1	
260C Volatile Organics	Analytical M	lethod: EPA 82	60C/5030C						
lenzene	<1.0	ug/L		1.0	1		03/13/17 09:32	71-43-2	
thylbenzene	<1.0	ug/L		1.0	1		03/13/17 09:32		
oluene	<1.0	ug/L		1.0	1		03/13/17 09:32		
(ylene (Total) Surrogates	<1.0	ug/L		1.0	1		03/13/17 09:32		
,2-Dichloroethane-d4 (S)	97	%.	61	8-153	1		03/13/17 09:32	17060.07.0	
-Bromofluorobenzene (S)	101	%.		9-124	1		03/13/17 09:32		
oluene-d8 (S)	89	%.		9-12 4	1		03/13/17 09:32		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-26I	Lab ID: 701	2857019	Collected: 03/09/1	7 11:00	Received: 03	/09/17 16:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Met	hod: EPA 82	270D Preparation Me	thod: El	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	2 56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	2 50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	2 53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 19:02	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13			
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13			
Phenanthrene	<5.0	ug/L	5.0	1		03/20/17 19:02		
Pyrene	<5.0	ug/L	5.0	1		03/20/17 19:02		
Surrogates			0.0	•	00/10/// 00//0	00,20,7,7,000		
Nitrobenzene-d5 (S)	81	%.	35-114	1	03/13/17 09:13	03/20/17 19:02	4165-60-0	
2-Fluorobiphenyl (S)	78	%.	43-116	1	03/13/17 09:13	03/20/17 19:02	2 321-60-8	
p-Terphenyl-d14 (S)	84	%.	33-141	1	03/13/17 09:13	03/20/17 19:02	1718-51-0	
Phenol-d5 (S)	34	%.	10-110	1	03/13/17 09:13	03/20/17 19:02	4165-62-2	
2-Fluorophenol (S)	46	%.	21-110	1	03/13/17 09:13	03/20/17 19:02	367-12-4	
2,4,6-Tribromophenol (S)	85	%.	10-123	1		03/20/17 19:02		
2-Chlorophenol-d4 (S)	70	%.	33-110	1		03/20/17 19:02		
1,2-Dichlorobenzene-d4 (S)	60	% .	16-110	1		03/20/17 19:02		
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 17:36	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 17:36	100-41-4	
Toluene	r: <1.0	ug/L	1.0	1		03/13/17 17:36	108-88-3	
Xylene (Total) <i>Surrogates</i>	<1.0	ug/L	1.0	1		03/13/17 17:36	1330-20-7	
1,2-Dichloroethane-d4 (S)	90	%.	68-153	1		03/13/17 17:36	17060-07-0	
4-Bromofluorobenzene (S)	100	%.	79-124	1		03/13/17 17:36		
Toluene-d8 (S)	99	%.	69-124	1		03/13/17 17:36		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-26D	Lab ID: 701	2857018	Collected: 03/09/1	7 08:50	Received: 03	/09/17 16:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 82	270D Preparation Me	ethod: E	PA 3510C			
Acenaphthene	2.4J	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	83-32-9	
Acenaphthylene	35.8	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	206-44-0	
Fluorene	6.9	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	193-39-5	
2-Methylnaphthalene	54.3	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	91-57-6	
Naphthalene	199 🕠) ug/L	25.0	5	03/13/17 09:13	03/21/17 16:22	91-20-3	
Phenanthrene	6.4	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 18:35	129-00-0	
Surrogates		•						
Nitrobenzene-d5 (S)	84	%.	35-114	1	03/13/17 09:13	03/20/17 18:35	4165-60-0	
2-Fluorobiphenyl (S)	81	%.	43-116	1	03/13/17 09:13	03/20/17 18:35	321-60-8	
p-Terphenyl-d14 (S)	81	%.	33-141	1	03/13/17 09:13	03/20/17 18:35	1718-51-0	
Phenol-d5 (S)	36	%.	10-110	1	03/13/17 09:13	03/20/17 18:35	4165-62-2	
2-Fluorophenol (S)	52	%.	21-110	1	03/13/17 09:13	03/20/17 18:35	367-12-4	
2,4,6-Tribromophenol (S)	89	%.	10-123	1	03/13/17 09:13	03/20/17 18:35	118-79-6	
2-Chlorophenol-d4 (S)	76	%.	33-110	1	03/13/17 09:13	03/20/17 18:35	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	65	%.	16-110	1	03/13/17 09:13	03/20/17 18:35	2199-69-1	
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 17:57	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 17:57	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 17:57	108-88-3	
Xylene (Total)	13.7	ug/L	1.0	1		03/13/17 17:57	1330-20-7	
Surrogates			** 155			004045 45	47000 07 5	
1,2-Dichloroethane-d4 (S)	89	%.	68-153	1		03/13/17 17:57		
4-Bromofluorobenzene (S)	103	%.	79-124	1		03/13/17 17:57		
Toluene-d8 (S)	97	%.	69-124	1		03/13/17 17:57	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: HIMW-27S	Lab ID: 7012	857022	Collected: 03/13/1	7 11:20	Received: 03	3/13/17 15:24	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	od: EPA 82	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	78.7	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	83-32-9	
Acenaphthylene	4.0J	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 208-96-8	
Anthracene	7.5	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 206-44-0	
Fluorene	34.6	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	86-73-7	
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 193-39-5	R1
-Methylnaphthalene	155 🗩	ug/L	100	20	03/17/17 09:59	03/21/17 17:18	91-57-6	M1
Naphthalene	838 🗩	ug/L	100	20	03/17/17 09:59	03/21/17 17:18	91-20-3	M1
Phenanthrene	44.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	85-01-8	
Pyrene	2.9J	ug/L	5.0	1	03/17/17 09:59	03/21/17 13:08	3 129-00-0	
Surrogates								
Nitrobenzene-d5 (S)	57	%.	35-114	1	03/17/17 09:59	03/21/17 13:08	4165-60-0	
2-Fluorobiphenyl (S)	64	%.	43-116	1	03/17/17 09:59	03/21/17 13:08	3 321-60-8	
o-Terphenyl-d14 (S)	75	%.	33-141	1	03/17/17 09:59	03/21/17 13:08	3 1718-51-0	
Phenol-d5 (S)	30	%.	10-110	1	03/17/17 09:59	03/21/17 13:08	4165-62-2	
?-Fluorophenol (S)	43	%.	21-110	1	03/17/17 09:59	03/21/17 13:08	367-12-4	
2,4,6-Tribromophenol (S)	76	%.	10-123	1	03/17/17 09:59	03/21/17 13:08	3 118-79-6	
2-Chlorophenol-d4 (S)	67	%.	33-110	1	03/17/17 09:59	03/21/17 13:08	93951-73-6	
I,2-Dichlorobenzene-d4 (S)	46	%.	16-110	1	03/17/17 09:59	03/21/17 13:08	3 2199-69-1	
3260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
Benzene	35.7	ug/L	1.0	1		03/17/17 02:12	71-43-2	
Ethylbenzene	544 Ӯ	ug/L	20.0	20		03/17/17 16:02	2 100-41-4	
Toluene	13.3	ug/L	1.0	1		03/17/17 02:12	108-88-3	
Kylene (Total) S <i>urrogate</i> s	491D 411	ug/L	1.0	1		03/17/17 02:12	2 1330-20-7	MS
1,2-Dichloroethane-d4 (S)	111	%.	68-153	1		03/17/17 02:12	17060-07-0	
4-Bromofluorobenzene (S)	105	%.	79-124	1		03/17/17 02:12	2 460-00-4	
Toluene-d8 (S)	86	%.	69-124	1		03/17/17 02:12		

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/20/2017 04:54 PM

7013228

Sample: HIMW-27I	Lab ID: 701	3228007	Collected: 03/13/1	7 13:00	Received: 03	3/13/17 15:24 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Met	hod: EPA 8	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	86-73-7	
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 14:26	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1		03/20/17 14:26		
Pyrene	<5.0	ug/L	5.0	1		03/20/17 14:26		
Surrogates		-3	5.5	•				
Nitrobenzene-d5 (S)	79	%.	35-114	1	03/15/17 09:45	03/20/17 14:26	4165-60-0	
2-Fluorobiphenyl (S)	76	%.	43-116	1	03/15/17 09:45	03/20/17 14:26	321-60-8	
p-Terphenyl-d14 (S)	84	%.	33-141	1	03/15/17 09:45	03/20/17 14:26	1718-51-0	
Phenol-d5 (S)	29	%.	10-110	1	03/15/17 09:45	03/20/17 14:26	4165-62-2	
2-Fluorophenol (S)	43	%.	21-110	1		03/20/17 14:26		
2,4,6-Tribromophenol (S)	80	%.	10-123	1		03/20/17 14:26		
2-Chlorophenol-d4 (S)	70	%.	33-110	1		03/20/17 14:26		
1,2-Dichlorobenzene-d4 (S)	59	%.	16-110	1		03/20/17 14:26		
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C							
Benzene	<1.0	ug/L	1.0	1		03/16/17 18:43	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 18:43	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 18:43	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/16/17 18:43	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	85	%.	68-153	1		03/16/17 18:43		
4-Bromofluorobenzene (S)	101	%.	79-124	1		03/16/17 18:43		
Toluene-d8 (S)	95	%.	69-124	1		03/16/17 18:43	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Sample: HIMW-28S	Lab ID: 70	013228001	Collected: 03/10/	17 09:20	Received: 03	/10/17 14:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical M	ethod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	32.6	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	83-32-9	
Acenaphthylene	2.1J	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 208-96-8	
Anthracene	3.5J	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/15/17 09:45			
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	7 53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 12:07	206-44-0	
Fluorene	24.0	ug/L	5.0	1		03/20/17 12:07		
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45			
2-Methylnaphthalene	14.3	ug/L	5.0	1	03/15/17 09:45			
Naphthalene	129		25.0	5	03/15/17 09:45			
Phenanthrene	23.9	ug/L	5.0	1	03/15/17 09:45			
Pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45			
Surrogates		-g,-	0.0	•	00/10/1/ 00:10	00/20/1/ 12:0/	120 00 0	
Nitrobenzene-d5 (S)	74	%.	35-114	1	03/15/17 09:45	03/20/17 12:07	4165-60-0	
2-Fluorobiphenyl (S)	74	%.	43-116	1	03/15/17 09:45			
p-Terphenyl-d14 (S)	87	%.	33-141	1	03/15/17 09:45			
Phenol-d5 (S)	30	%.	10-110	1	03/15/17 09:45			
2-Fluorophenol (S)	43	%.	21-110	1	03/15/17 09:45			
2,4,6-Tribromophenol (S)	82	%.	10-123	1	03/15/17 09:45			
2-Chlorophenol-d4 (S)	68	%.	33-110	1	03/15/17 09:45			
1,2-Dichlorobenzene-d4 (S)	57	%.	16-110	1	03/15/17 09:45			
8260C Volatile Organics	Analytical Mo	ethod: EPA 8	260C/5030C					
Benzene	4.7	ug/L	1.0	1		03/16/17 20:45	71-43-2	
Ethylbenzene	76.7	ug/L	1.0	1		03/16/17 20:45	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 20:45	108-88-3	
Xylene (Total)	8.6	ug/L	1.0	1		03/16/17 20:45		
Surrogates		-					·	
1,2-Dichloroethane-d4 (S)	89	% .	68-153	1		03/16/17 20:45	17060-07-0	
4-Bromofluorobenzene (S)	102	% .	79-124	1		03/16/17 20:45	460-00-4	
Toluene-d8 (S)	96	%.	69-124	1		03/16/17 20:45	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Sample: DUP20170310 HIMW ~ 0285	Lab ID: 70	13228004	Collected: 03/10/1	7 07:00	Received: 03	3/10/17 14:08 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Me	thod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	31.3	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	83-32-9	
Acenaphthylene	2.0J	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	208-96-8	
Anthracene	3.2J	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	207-08-9	
Chrysene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	218-01-9	
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	206-44-0	
Fluorene	21.9	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	86-73-7	
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1		03/20/17 13:30		
2-Methylnaphthalene	13.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	91-57-6	
Naphthalene	118 🧃	ug/L	25.0	5	03/15/17 09:45	03/20/17 14:54	91-20-3	
Phenanthrene	21.9	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/15/17 09:45	03/20/17 13:30	129-00-0	
Surrogates								
Nitrobenzene-d5 (S)	72	%.	35-114	1	03/15/17 09:45	03/20/17 13:30	4165-60-0	
2-Fluorobiphenyl (S)	70	%.	43-116	1	03/15/17 09:45	03/20/17 13:30	321-60-8	
p-Terphenyl-d14 (S)	70	%.	33-141	1	03/15/17 09:45	03/20/17 13:30	1718-51-0	
Phenol-d5 (S)	28	%.	10-110	1	03/15/17 09:45	03/20/17 13:30	4165-62-2	
2-Fluorophenol (S)	41	%.	21-110	1	03/15/17 09:45	03/20/17 13:30	367-12-4	
2,4,6-Tribromophenol (S)	79	%.	10-123	1	03/15/17 09:45	03/20/17 13:30	118-79-6	
2-Chlorophenol-d4 (S)	66	% .	33-110	1	03/15/17 09:45			
1,2-Dichlorobenzene-d4 (S)	53	%.	16-110	1	03/15/17 09:45	03/20/17 13:30	2199-69-1	
8260C Volatile Organics	Analytical Me	thod: EPA 82	60C/5030C					
Benzene	4.8	ug/L	1.0	1		03/16/17 19:44	71-43-2	
Ethylbenzene	74.7	ug/L	1.0	1		03/16/17 19:44	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 19:44	108-88-3	
Xylene (Total)	8.1	ug/L	1.0	1		03/16/17 19:44	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	90	%.	68-153	1		03/16/17 19:44	17060-07-0	
4-Bromofluorobenzene (S)	100	%.	79-124	1		03/16/17 19:44	460-00-4	
Toluene-d8 (S)	94	%.	69-124	1		03/16/17 19:44	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

National Grid Hempstead Site

Pace Project No.:

Date: 03/27/2017 12:40 PM

7012857

Sample: HIMW-28i	Lab ID: 701	2857013	Collected: 03/09/1	7 13:20	Received: 03	3/09/17 16:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical Meti	nod: EPA 8	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	207-08-9	
Chrysene	<5.0	ug/L	5.0	1		03/20/17 17:12		
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	53-70-3	
Fluoranthene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	206-44-0	
Fluorene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	86-73-7	
indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	193-39-5	
2-Methylnaphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	91-57-6	
Naphthalene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	91-20-3	
Phenanthrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	85-01-8	
Pyrene	<5.0	ug/L	5.0	1	03/13/17 09:13	03/20/17 17:12	129-00-0	
Surrogates		_						
Nitrobenzene-d5 (S)	74	%.	35-114	1	03/13/17 09:13	03/20/17 17:12	4165-60-0	
2-Fluorobiphenyl (S)	70	%.	43-116	1	03/13/17 09:13	03/20/17 17:12	321-60-8	
p-Terphenyl-d14 (S)	88	%.	33-141	1	03/13/17 09:13	03/20/17 17:12	1718-51-0	
Phenol-d5 (S)	28	%.	10-110	1	03/13/17 09:13	03/20/17 17:12	4165-62-2	
2-Fluorophenoi (S)	41	%.	21-110	1	03/13/17 09:13	03/20/17 17:12	367-12-4	
2,4,6-Tribromophenol (S)	77	%.	10-123	1	03/13/17 09:13	03/20/17 17:12	118-79-6	
2-Chlorophenol-d4 (S)	64	%.	33-110	1	03/13/17 09:13	03/20/17 17:12	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	55	%.	16-110	1	03/13/17 09:13	03/20/17 17:12	2199-69-1	
B260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 19:38	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 19:38	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 19:38	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 19:38	1330-20-7	
Surrogates		=						
1,2-Dichloroethane-d4 (S)	85	%.	68-153	1		03/13/17 19:38	17060-07-0	
4-Bromofluorobenzene (S)	101	% .	79-124	1		03/13/17 19:38	460-00-4	
Toluene-d8 (S)	98	%.	69-124	1		03/13/17 19:38	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: TB	Lab ID:	7012857006	Collected: 03/07/1	7 00:00	Received: 0	3/07/17 15:28	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Benzene	<1.0	0 ug/L	1.0	1		03/13/17 08:2	1 71-43-2	
Ethylbenzene	<1.0	0 ug/L	1.0	1		03/13/17 08:21	1 100-41-4	
Toluene	<1.6	0 ug/L	1.0	1*		03/13/17 08:21	1 108-88-3	
Xylene (Total)	<1.0	0 ug/L	1.0	1		03/13/17 08:21	1 1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	99	9 %.	68-153	1		03/13/17 08:21	I 17060-07-0	
4-Bromofluorobenzene (S)	102	2 %.	79-124	1		03/13/17 08:21	I 460-00-4	
Toluene-d8 (S)	90) %.	69-124	1		03/13/17 08:21	2037-26-5	

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: TB030917	Lab ID: 701	2857021	Collected: 03/09/1	7 00:00	Received: 0	3/09/17 16:00	Matrix: Water	W
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/13/17 16:56	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/13/17 16:56	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/13/17 16:56	108-88-3	
Xylene (Total)	<1.0	ug/L	1.0	1		03/13/17 16:56	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	88	%.	68-153	1		03/13/17 16:56	17060-07-0	
4-Bromofluorobenzene (S)	101	%.	79-124	1		03/13/17 16:56	460-00-4	
Toluene-d8 (S)	95	%.	69-124	1		03/13/17 16:56	2037-26-5	

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Date: 03/20/2017 04:54 PM

Sample: TB20170310	Lab ID: 701	Lab ID: 7013228005		7 00:00	Received: 03	3/10/17 14:08	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/16/17 19:24	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 19:24	100-41-4	
Toluene	<1.0	ug/L	1.0	1		03/16/17 19:24	108-88-3	
Xylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/16/17 19:24	1330-20-7	
1,2-Dichloroethane-d4 (S)	87	%.	68-153	1		03/16/17 19:24	17060-07-0	
4-Bromofluorobenzene (S)	103	%.	79-124	1		03/16/17 19:24	460-00-4	
Toluene-d8 (S)	94	%.	69-124	1		03/16/17 19:24	2037-26-5	

Project:

National Grid Hempstead Site

Pace Project No.: 7012857

Date: 03/27/2017 12:40 PM

Sample: FB-031317	Lab ID: 701	2857023	Collected: 03/13/1	7 14:00	Received: 03	/13/17 15:24 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Met	nod: EPA 8	270D Preparation Me	ethod: El	PA 3510C		· -	
Acenaphthene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	83-32-9	
Acenaphthylene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	208-96-8	
Anthracene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	120-12-7	
Benzo(a)anthracene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	56-55-3	
Benzo(a)pyrene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	50-32-8	
Benzo(b)fluoranthene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	205-99-2	
Benzo(g,h,i)perylene	<5.0	ug/L	5.0	1	03/17/17 09:59	03/21/17 14:32	191-24-2	
Benzo(k)fluoranthene	<5.0	ug/L	5.0	1		03/21/17 14:32		
Chrysene	<5.0	ug/L	5.0	1	03/17/17 09:59			
Dibenz(a,h)anthracene	<5.0	ug/L	5.0	1	03/17/17 09:59			
Fluoranthene	<5.0	ug/L	5.0	1		03/21/17 14:32		
Fluorene	<5.0	ug/L	5.0	1		03/21/17 14:32	=	
ndeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	03/17/17 09:59			
2-Methylnaphthalene	<5.0	ug/L	5.0	1		03/21/17 14:32		
Naphthalene	<5.0	ug/L	5.0	1		03/21/17 14:32		
Phenanthrene	<5.0	ug/L	5.0	1	03/17/17 09:59			
Pyrene	<5.0	ug/L	5.0	1	03/17/17 09:59			
Surrogates		-5					0 00 0	
Nitrobenzene-d5 (S)	78	%.	35-114	1	03/17/17 09:59	03/21/17 14:32	4165-60-0	
2-Fluorobiphenyl (S)	68	%.	43-116	1	03/17/17 09:59	03/21/17 14:32	321-60-8	
o-Terphenyl-d14 (S)	73	%.	33-141	1	03/17/17 09:59	03/21/17 14:32	1718-51-0	
Phenol-d5 (S)	32	%.	10-110	1		03/21/17 14:32		
2-Fluorophenol (S)	47	% .	21-110	1	03/17/17 09:59	03/21/17 14:32	367-12-4	
2,4,6-Tribromophenol (S)	62	%.	10-123	1	03/17/17 09:59	03/21/17 14:32	118-79-6	
2-Chlorophenol-d4 (S)	70	%.	33-110	1	03/17/17 09:59			
1,2-Dichlorobenzene-d4 (S)	61	%.	16-110	1	03/17/17 09:59			
3260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
Benzene	<1.0	ug/L	1.0	1		03/16/17 19:10	71-43-2	
Ethylbenzene	<1.0	ug/L	1.0	1		03/16/17 19:10	100-41-4	
l'oluene	<1.0	ug/L	1.0	1		03/16/17 19:10	108-88-3	
(ylene (Total) Surrogates	<1.0	ug/L	1.0	1		03/16/17 19:10	1330-20-7	
,2-Dichloroethane-d4 (S)	109	%.	68-153	1		03/16/17 19:10	17060-07-0	
I-Bromofluorobenzene (S)	103	%.	79-124	1		03/16/17 19:10		
		70.	10-127			00110111 13.10	700-00-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

National Grid Hempstead Site

Pace Project No.: 7013228

Date: 03/20/2017 04:54 PM

Sample: TB031317	Lab ID:	7013228008	Collected: 03/13/1	7 00:00	Received: 0	3/13/17 15:24	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Benzene	<1.	0 ug/L	1.0	1		03/16/17 18:23	3 71-43-2	
Ethylbenzene	<1.	0 ug/L	1.0	1		03/16/17 18:23	3 100-41-4	
Toluene	<1.	0 ug/L	1.0	1		03/16/17 18:23	108-88-3	
Xylene (Total)	<1.	0 ug/L	1.0	1		03/16/17 18:23	3 1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	9	1 %.	68-153	1		03/16/17 18:23	3 17060-07-0	
4-Bromofluorobenzene (S)	10	5 %.	79-124	1		03/16/17 18:23	3 460-00-4	
Toluene-d8 (S)	9	9 %.	69-124	1		03/16/17 18:23	3 2037-26-5	

ATTACHMENT B SUPPORT DOCUMENTATION

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Face Analytical www.pacelabs.com

Pace Project No./ Lab I.D. (N/A) DRINKING WATER Samples Intact F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS OTHER (N/A) Sealed Cooler Custody WO#:7012857 $\dot{\sigma}$ Ice (Y/N) Весејуед оп GROUND WATER Residual Chlorine J. ul dmaT Page: REGULATORY AGENCY RCRA アンコーー TIME STATE: Site Location DATE NPDES UST Requested An: DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION X370 Analysis Test ₽N/A Aracri Other Important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days. 140 Methanol Preservatives $Na_2S_2O_3$ NaOH HCI 9 NN 3 Je P HNO3 Sompany Name 200 PS2H 577 Pace Project Manager: Section C TIME Unpreserved 91 ace Quote Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION - Hemisterd TIME 4 2 COMPOSITE END/GRAB Arcor DATE COLLECTED こうろうとうと RELINGUISHED BY LAFFILLATION 055 1330 RE 1315 37417 101C TIME Gra COMPOSITE START 34 7 DATE Pete Required Project Information Project Name Town SAMPLE TYPE (G=GRAB C=COMP) Purchase Order No. 3 2 D MATRIX CODE ORIGINAL Section B Report To: Sapy To: % ¥ 6 SL SL OL TS AR OT ST エナーつうけ 135 HTWIN - (3) 25 MATRIX / CODE Matrix Codes HIMM - 125 Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other 3 MITT HTMM ADDITIONAL COMMEN 'S (A-Z, 0-9 / _-) Sample IDs MUST EE UNIQUE SAMPLE ID ON SUNDAY IST AECON Time 856 56 36 36 Required Client Information Section A Required Client Information: Requested Due Date/TAT: 9 Section D Address: Page 41 of 47 12 7 60 S 9 00 6 ITEM # ~ 4 ~ 41 of 1899

Pace Analytical

Project # 1012857 Client Name:

	7					-		F-11-C-002-	
Comments/ Resolution:	<u> </u>		- 6						
Person Contacted:	14. 13.		Date/T	iiie.	111411111111111111111111111111111111111				
Client Notification/ Resolution:			- · · ·	ima'			ata Required?	YIN	
Pace Trip Blank Lot # (if purchased):								Y / N	-
Trip Blank Custody Seals Present	∐Yes	CINO							
Trip Blank Present:	□Yes		SIN/A						
Headspace in VOA Vials (>6mm):	L Yes		DNA		020				
Samples checked for dechlorination:	□Yes		□N/A						
Exceptions: VOA, micro, TOC, O&G	□Yes	ΠNα	N/A	14.					
compliance with EPA recommendation.							nd Time vative added:		
All containers needing preservation are found to be in	□Yes	□No	QNA	Initial when completed:		Lot # o	of added wative:	<u> </u>	
-Includes date/time/ID/Analysis Matrix St. All containers needing preservation have been checked.		□No `	DINA	13.					
Sample Labels match COC: Matrix SIL	w) o	IL							
Filtered volume received for Dissolved tests	Yes	□No	□N/A	12.					
Containers Intact:	□Yes	□No	DIMA	11.					7
-Pace Containers Used:	QYes	□N ₀	□N/A	10.		7.0		***	
Correct Containers Used:		□No	DNA						
Sufficient Volume:		□No	□N/A	9.					
Rush Turn Around Time Requested:	Dyes	□No	□N⁄A	8.					
Short Hold Time Analysis (<72hr):		DINO	□N⁄A	7.					_
Samples Arrived within Hold Time:		DANO		в.					
Sampler Name & Signature on COC:		. □No		5.			-		
Chain of Custody Relinquished:		5 No		4.	ş				
Chain of Custody Filled Out:		s 🗆 No		3.					
Chain of Custody Present		s 🗆 No		2.					
Temp should be above freezing to 6°C	NIVO	s [No		1.					
Cooler Temperature: 40				Comme	ents:		contents:	th 100	
Thermometer Used: TH077 TH078					12		-Date-and-Initia	Is of person ex	amining
Packing Material: [] Bubble Will		e of lo	- 2	Blue	None	5a	mples on ice, co	ooling process ha	as begun
Custody Seal on Cooler/Box Present: Subble	a Rans		Vone	Other	,				
Tracking #:	- : [_	HG	Sea	ls intact:	Lycs	☐ no			
Courier: Fed Ex TUPS TUSPS TOR	ent L	_L_C-C-111111	na cae			-		Trailele M	
	. [Lomm	ercial	Race	e Other		Colo		

Pace Project No./ Lab I.D. (N/A) DRINKING WATER Samples Intact > F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS つううとうう 400 OTHER (N/Y) 0 7 Custody Sealed Cooler Due Date: 03/21/17 Ice (Y/N) Received on GROUND WATER WO#:7012857 Residual Chlorine (Y/N) 5 J° ni qmeT REGULATORY AGENCY RCRA INDO Requested Analysis Filtered (Y/N) TIME CLIENT: AECOM-B 4 1917 Site Location 3917 STATE: NPDES DATE UST U 3 M DATE Signed -(MM/DD/YY): ACCEPTED BY / AFFILIATION CHAIN-OF-CUSTODY / Analytical Request The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be 5 Araca DABS **↓** tesT sisylsnA N/A Judan' Other Methanol K (2) とうかける Preservatives Na₂S₂O₃ NaOH N N HCI HNO³ Company Name 100 [†]OS[₹]H Section C Pace Project 15/0 Pace Quote Reference: Sol Unpreserved TIME Address: t t 1 # OF CONTAINERS Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: 4/6/2 SAMPLE TEMP AT COLLECTION Ond - Hemostad 3/9/17 **PATIF** TIME COMPOSITE END/GRAB DATE COLLECTED RECTINGUISHED BY I AFFILIATION Fairbon 1330 1030 900 011 1305 256 surdayis. TIME 00 COMPOSITE START Ŷ 3817 DATE roject Vane. to wal Required Project Information: Report To: Peles Copy To: Jon S (G=GRAB C=COMP) SAMPLE TYPE urchase Order No. SAN S B A (see valid codes to left) MATRIX CODE DRIGINAL Section B WWW WWP OLL WMP AR AR AR OT MATRIX / CODE Matrix Codes HV 30 Drinking Water Water Waste Water Product Soil/Solid 4 Email To: Sundays + a action . com THWE TH HHMM IHS S Oil SD 73 HIME 3MHI HIMIN THME ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Pace Analytical SAMPLE ID Arcon Required Clent Information Section A Required Client Information: 型。856 563 Requested Due Date/TAT Section D Company Page 43 of 47 00 12 7 က 4 22 9 7 6 ITEM # 43 of 1899

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Pace Analytical

Pace Project No./ Lab I.D. (N/A) DRINKING WATER Samples Intact) 0 F-ALL-Q-020rev.07, 15-May-2007 070 00 SAMPLE CONDITIONS OTHER (N/A) ァ Sealed Cooler V Custody of 3 5 (N/Y) 901 Кесемед оп GROUND WATER Residual Chlorine (Y/N) 5 J. nl qmeT 0 age: ンと REGULATORY AGENCY RCRA 1000 Requested Analysis Filtered (Y/N) TIME 1502 3917 Site Location STATE NPDES DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION × メメ HVd × × 又 × TEX × 9 × ♦ tseT sisylsnA1 N/A Other Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days. Methanol Preservatives Na₂S₂O₃ NaOH 444 HCI 65 2 nvoice Information: HNO Company Name: 11:04 PS2H Section C ace Profile # TIME 24 ئ Unpreserved r) N Address: 5 # OF CONTAINERS , SAMPLER NAME AND SIGNATURE 2/9/17 + SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 500 SAMPLE TEMP AT COLLECTION DATE roject Name: My Trown GRID Hours rich 0 TIME ABLON ASCER DATE COLLECTED 8 P 0 2 111 76 09 8 REPORT OF PETER . FAIR BAMES @ RELINQUISHED BY / AFFILIATION 13:50 051 h \$ 50 SUMBUSIST 55:11 11:00 9:20 7:00 TIME COMPOSITE 319117 3817 DATE Required Project Information: 3 207 S G ৬ 3 P 3 S (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: 7 5 2 3 **AMATRIX CODE** Section B ORIGINAL Copy To: 348 MATRIX / CODE Matrix Codes Drinking Water Water Waste Water Product Soil/Solid 74202 Oil Wipe Air Tissue Other 75 PETER. PAIL BANKS @ GEON. UM ADDITIONAL COMMENTS ddress: ST W- CENESSEK STS とらひ Duf 20170308 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 76 CSRP XI N 60 SAMPLE ID BURRAIO, NY ķ -1016 -856 . 5'th Section D Required Client Information Section A Required Client Information: Requested Due Date/TAT: OMPANY: AECOM MAH るどり出 チャラグ T K E H RE サイスと t. + Page 44 of 47 12 ITEM # 7 2 9 00 0 44 of 1899

Sample Condition Upon Receip

WO#:7012857

Pace Analytical"

Client Name: AFECOM -B

PM: JSA Due Date: 03/21/17 CLIENT: AECOM-B 1 10,000 "__

Courier: Fed Ex TUPS TUSPS TOllen	t Commercial ,	Page Other	Optional Proj. Due Date
Tracking #: Custody Seal on Cooler/Box Present: yes	no Seals i	intact: 🔀 ycs	Proj Name.
		Other	
Packing Material: Bubble Wrap	Type of Ice: Wet	-	Samples on ice, cooling process has begun
Thermometer Used: TH077 TH078	(
Cooler Temperature: 3.5°C 12	9°C,54°		Date and Initials of person examining contents: 3 9 17 JR
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	DYes □No □N/A	1,	
Chain of Custody Filled Out:	ÚYes □No □N/A	2	2
Chain of Custody Relinquished:	Yes No N/A	3.	
Sampler Name & Signature on COC:	Yes DNo DN/A	4.	
Samples Arrived within Hold Time:	Yes ONO ON/A	5.	N .
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.	
Rush Turn Around Time Requested:	□Yes □No □N/A	7.	
Sufficient Volume:	ØYes □No □N/A	8.	
Correct Containers Used:	Yes ONO ON/A	9.	
-Pace Containers Used:	Yes ONO ON/A		
Containers Intact:	Yes ONO ON/A	10.	
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.	
Sample Labels match COC;	Dres ONO ON/A	12.	
	WIOIL		
All containers needing preservation have been checked.	□Yes .□No ØNA	13.	*
All containers needing preservation are found to be in		Initial when completed:	Lot # of added
compliance with EPA recommendation.	Í	completed.	processarios
			Date and Time preservative added:
Exceptions: VOA, micro, TOC, O&G		1.4	preservative added.
Samples checked for dechlorination:	□Yes □No □N/A		
Headspace in VOA Vials (>6mm):	□Yes □N/A		
Trip Blank Present:	□Yes □No □N/A	16.	
Trip Blank Custody Seals Present	□Yes □No □N/A		
Pace Trip Blank Lot # (if purchased):	•		
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date/T	ime:	
Comments/ Resolution:			
)r			

45 of 1899

DRINKING WATER PM: JSA Due Date: 03/21/17 OTHER WO#:7012857 GROUND WATER CLIENT: AECOM-B REGULATORY AGENCY T RCRA Requested Analysis Filtered (Y/N) NPDES T STATE: Site Location CHAIN-OF-CUSTODY / Analytical Request Document TSU T The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed Mach Reference:
Pace Project
Manager: Jenni+th
Pace Profile #: Company Name: Invoice Information: Section C Address: Pace Quote - Henristead Tall badco SUNCLEY ST 600 Section B Required Project Information: Project Number: Copy To: Purchase Order No.: Report To: Sondays to apresent con Phone SSD CO 30 Rax.
Requested Due Date/TAT: STVD Pace Analytical www.pacelebs.com 3 AECOM Section A Required Client Information: Company: Address:

	6 - 32 6 - 32 6 - 32		I.D.		V.	7		3						T			T			(N/A)		el.
		_	Pace Project No./ Lab I.D		3 022	02.		20							SAMPLE CONDITIONS		, ,			(N/Y)		F-ALL-Q-020rev.07, 15-May-2007
	15181	añ.	e Proje	3	#CT	t	*	才							IPLE CO		5		1910	ustod) ed Co	Seal C	v.07, 15
	Basto 1 sul		Pac		3	A		Q							SAM		7			bəviə: N\Y) ə		Q-020re
	15.55	(N/X)	Residual Chlorine										7	\exists			28		0.	, uị du	19T	F-ALL-
(N)										F					TIME C							
area (T	15)														F 2	-	51	1			+	
SIS LIII															PATE	31.517	31317 1526	-	3	-	1/4	-
Analy	1.															7)	v)	\dagger		-	3	•
Requested Analysis Filtered (17/N)	Ť		1 ATTIV												ATION	١	2			Į	DATE Signed (MM/DD/YY):	
Ledi	11		×3(5)	X	X	XX	X	X	1					×	ACCEPTED BY / AFFILIATION	2	3		1	Mar	DATE (MM/)	
	‡n/A	W. F.	tesT sisylsnA 👃	9-1	121			Ŋ.	1/8	O.		9	N.		D BY	1	a		(1		
	£0		Methanol												CCEPTI	7	3.		Aga C	B	X	St days.
	/ative		NaOH Na ₂ S ₂ O ₃		X		_	_							\$	3	Z			,	-) /	Withing
	Preservatives		HCI HNO ³	10	4	9	7	7						2	1	7)		300	18	1 /2	not paid
	P		[⊅] OS ^z H		7.0	-	~\	7								7	76		×	d	1	Ilvoices
	100	S	# OF CONTAINER	7	7) 	17	1	6					7	TIME	1	15,0	ļ) `	for any
7			SAMPLE TEMP AT			8	d.							0000	75-6	+	1		TURE	YER:	PLER:	r month
		SITE	TIME			(M)									-	2117	3/3/		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	SIGNATURE of SAMPLER:	rges of 1.5% per month for any invalces not pair
	COLLECTED	COMPOSITE END/GRAB	DATE												NO			n	ER NAME	PRINT N	SIGNATI	g to late char
	COLLE	SITE	TIME	308	110	1120	1300	1400							RELINGUISHED BY AFFILIATION		7		SAMPLE			and agreeing
		COMPOSITE	DATE	31317	_			\rightarrow									DA			.2		ent terms
	(AM	-GRAB C=CO		E				H		+			+	-	Nonisi	1						ay paym
	_	see valid codes to				Δ									HH (6	3		_	ي.		VET 30 0
	Codes	ter DW WT WW SL	WWP TS TO	Ŋ	25	5 MS/145	I									J	હ			ORIGINAL		spling Pace's N
	Matrix Codes MATRIX / CODE	Drinking Water Water Waste Water Product Soil/Solid	Wipe Air Tissue Other	NW-AZ	1	- 275 M	-27	ら下					()	13					3	Ō		n you are acce
				THIN	さけて	MATH		031							MMENT							ing this fon
	nformation	!	SAMPLE ID (A-Z, 0-9/-,-) Sample IDs MUST BE UNIQUE	150	-4-	7	MW-TI+	FB-031							ADDITIONAL COMMENTS							Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges
	Section D Required Client Information		Sample IDs												AL							*Import
-	0) [2		# MƏTI	-	2	က	4	ນ	0 1	- 00	6	10	Ξ	12				Pa	ge 46	6 of 4	7	
			46 of	189	9									(90)								

WO#:7012857

Sample Condition Upon Receip

Pace Analytical

Client Name: Acon Hempsend

PM: JSA Due Date: 03/21/17

CLIENT: AECOM-B

Courier: Fed Ex TUPS TUSPS TOllent	Commercial (Other	Optional
Tracking #:			Proj. Due Date Proj. Name
Custody Seal on Cooler/Box Present:	L no Seals	intact:	☐ no
Packing Material: Bubble Wrap		Cather	Samples on ice, cooling process has begun
Thermometer Used: TH077 TH078	Type of Ice: Wet) Blue None	
Cooler Temperature: 4,8			Date and Initials of person examining contents: 3 3 17 TF
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	DYes □No □N/A		
Chain of Custody Filled Out:	TYPES NO NA	2.	
Chain of Custody Relinquished:	Dres □No □N/A		
Sampler Name & Signature on COC:	☑Yes □No □N/A	4.	
Samples Arrived within Hold Time:	Yes No N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.	
Sufficient Volume:	Dres Ono Onia	8.	
Correct Containers Used:	ØYes □No □N/A	9.	
-Pace Containers Used:	ØYes □No □N/A		
Containers Intact:	Yes No N/A	10.	
Filtered volume received for Dissolved tests	☐Yes ☐No ☐N/A	11.	
Sample Labels match COC:	Yes ONO ON/A	12.	
- Includes date/time/tb// that/ the	WT OIL		
All containers needing preservation have been checked.	□Yes □No □N/A	13	21.6
All containers needing preservation are found to be in	□Yes □No PN/A	Initial when completed:	Lot # of added preservative:
compliance with EPA recommendation.			Date and Time
			Date and Time preservative added:
Exceptions: VOA, micro, TOC, O&G	□Yes □No □NIA	14	
Samples checked for dechlorination:			
Headspace in VOA Vials (>6mm):			
Trip Blank Present:		10.	
Trip Blank Custody Seals Present	□Yes □No □N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
S O Standards	Date/		SW 2 different
Comments / Possilution: MS MSD PULL O	n coc as 23	sep. sample	sample.
times of coil	ection - log	igea as orre	34/11/12

* PM (Project Manager) review is documented electronically in LIMS.

CHAIN-OF-CUSTODY / Analytical Request Document

WO#:7013228

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accur

Pace Analytical

Pace Project No./ Lab I.D. DRINKING WATER (Y/N) SAMPLE CONDITIONS OTHER (N/A) Sealed Cooler Ice (Y/N) GROUND WATER Received on Residual Chlorine (Y/N) 26 O° ni qmeT REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) 80:14/0/18 TIME Site Location STATE NPDES 1/01/2 DATE 03/60/ UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION P.A.H. × Just 5 Sur our Analysis Test N/A Other CRESP Reference:
Pace Project John Manager:
Pace Profile #: Methanol any invoices not paid within 30 days Preservatives Na₂S₂O₃ 3 HOBN 4 HCI Invoice Information Attention: J, Sult N 4ИО3 Company Name: [⊅]OS^ZH 30 Section C Unpreserved ace Quote 13340 y Address: TIME d # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Report TO: PETER, PARIE SAMES @ MECSA. COM TIME 3/10/ 3/60/ COMPOSITE END/GRAB A CANZINAS DATE COLLECTED Project Number: 604 119 20. 11176098 SUNDANIST RELINQUISHED BY / AFFILIATION AECIN A. 4.50 3.05 TIME 2006 3.38 Project Pane Thank Co. 3. COMPOSITE 3/10/17 3/10/17 DATE Required Project Information: SON U W) (G=GRAB C=COMP) SAMPLE TYPE U 3 Purchase Order No.: V 3 1 ト MATRIX CODE Section B ORIGINAL Copy To: Matrix Codes Drinking Water Water Waste Water 57 Product Soil/Solid Oil Wipe Air Tissue Other いなどけ Address: 251 W. CENESSEE 23 JOHNSONDANITEREDA . CA 205 707 0.29-17-05-0 ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6251630 FROOM Joppen 54 SAMPLE ID 135 TYE. コアコ Section A Required Client Information: Required Client Information 166.876.5736 Requested Due Date/TAT: Section D Company: Page 19 of 20 # M3TI m 2 10 11 12 9 1 00 6 19 of 499

F-ALL-Q-020rev.07, 15-May-2007

Pace Analytical

Sample Condition Upon Recei

WO#:7013228

Client Name: Accom

PM: JSA

Due Date: 03/24/17

CLIENT: AECOM-B

Courier: Fed Ex TUPS TUSPS TOller	nt Dom	mercia	al Pace	Other	Optional Proj. Due Date
Tracking #:	/				Proj. Name
Custody Seal on Cooler/Box Present:	L no	Se	eals intact:	Lycs	nc (see a see a
Packing Material: Bubble Wrap	Bags Type of]None		None F	Samples on ice, cooling process has begun
Thermometer Used: TH077 TH078	Type of	ice. v	ruet bluc	Hone _	WORLD OF THE SHOP IN THE GREEN
Cooler Temperature: 24			Comme	nte	Date and Initials of person examining contents:
Temp should be above freezing to 6°C			Comme	1115.	
Chain of Custody Present:	□Yes □		IN/A 1.		
Chain of Custody Filled Out:	Yes 🗆		In/A 2.		
Chain of Custody Relinquished:	Yes 🗆		In/a 3.		
Sampler Name & Signature on COC:	Yes 🗆		In/A 4.		
Samples Arrived within Hold Time:	Yes 🗆		In/A 5.		
Short Hold Time Analysis (<72hr):	□Yes	/	In/A 6.		
Rush Turn Around Time Requested:	□Yes □		In/a 7.		
Sufficient Volume:	□¥es □		In/A 8.		
Correct Containers Used:	Yes 🗆	**************************************	In/a 9.		
-Pace Containers Used:	☐Yes □		In/A		• •
Containers Intact:	Yes 🗆		IN/A 10.		
Filtered volume received for Dissolved tests	□Yes□	-	M/A 11.		
Sample Labels match COC:	ØYes □]No □	IN/A 12.		
- Includes date/time/te/	_ WF OIL				
All containers needing preservation have been checked.	☐Y@S ☐	1No 9	N/A 13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □	No D	Initial who		Lot # of added preservative:
Exceptions: VOA, micro, TOC, O&G					Date and Time preservative added:
Samples checked for dechlorination:	□Yes □	No B	N/A 14.		
Headspace in VOA Vials (>6mm):	□Yes 🎾				
Trip Blank Present:	ŊYes □	•			
Trip Blank Custody Seals Present	☐Yes ☐		/		
Pace Trip Blank Lot # (if purchased):					
					Field Data Required? Y / N
Client Notification/ Resolution:		D:	ate/Time:		and American State (Control and American America
Person Contacted:					
Comments/ Resolution:					
	THE PARTY OF THE P				

^{*} PM (Project Manager) review is documented electronically in LIMS.

Project: National Grid Hempstead Site

Pace Project No.: 7012857

 Method:
 EPA 8270D

 Description:
 8270 MSSV

 Client:
 AECOM

 Date:
 March 27, 2017

General Information:

21 samples were analyzed for EPA 8270D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 17237

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7012857022

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 82927)
 - 2-Methylnaphthalene
 - Naphthalene
- MSD (Lab ID: 82928)
 - 2-Methylnaphthalene
 - Naphthalene

R1: RPD value was outside control limits.

- MSD (Lab ID: 82928)
 - Indeno(1,2,3-cd)pyrene

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid Hempstead Site

Pace Project No.: 7012857

Method:EPA 8270DDescription:8270 MSSVClient:AECOMDate:March 27, 2017

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid Hempstead Site

Pace Project No.: 7012857

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: AECOM

Date: March 27, 2017

General Information:

23 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project: National Grid Hempstead Site

Pace Project No.: 7013228

 Method:
 EPA 8270D

 Description:
 8270 MSSV

 Client:
 AECOM

 Date:
 March 20, 2017

General Information:

6 samples were analyzed for EPA 8270D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid Hempstead Site

Pace Project No.: 7013228

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: AECOM

Date: March 20, 2017

General Information:

8 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 17267

D6: The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 83030)
 - Toluene

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

APPENDIX B OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

Date: Time: Weather: Outdoor Temper Inside Trailer Temp Performed By	erature:	13 Cl ~39 ~66	/2017 :45 ear 9° F 8° F	- - - -	Compressor (Kaesar Rotary Screw)						
	O ₂ Ge	enerator (A	irSep)				Compressor	(Kaesar Rotai	y Screw)	
Hours			18,683.0	-	Compressor T	`ank *			110		(psi)
Feed Air Pressure *			100	(psi)		(rea	dings below	are made from	control pa	anel)	
Cycle Pressure *			70	(psi)	Delivery Air Element Outle	et Temperatu	ire		122		(psi) (oF)
Oxygen Receiver Pressur	re *			105 (psi)	Running Hou Loading Hou				21,879 14,293		(hours)
Oxygen Purity * maximum reading during loa	iding cycle		76.0	_(percent)	* maximum read	ing during load	ing cycle				
T	njection Bank 1	1		O ₂ Injecti	Injection Bank 2				Injectio	on Bank 3	
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	30	31	OW-1-5S	67.3	30	19	OW-1-9D	88.5	30	30
OW-1-2	96.5	30	19	OW-1-6S	67.0	25	20	OW-1-10D	87.2	40	24
OW-1-3	96.3	30	31	OW-1-7S	66.9	30	18	OW-1-11D	86.1	35	30
OW-1-4	95.0	30	30	OW-1-8S	66.7	30	18	OW-1-12D	85.3	35	30
OW-1-5D	93.9	35	30	OW-1-9S	66.0	30	18	OW-1-13D	84.7	45	31
OW-1-6D	92.4	35	32	OW-1-10S	54.6	25	13	OW-1-14D	84.1	30	30
OW-1-7D	91.1	35	31	OW-1-11S	54.1	30	14	OW-1-15D	83.3	30	29
OW-1-8D	89.6	40	30	OW-1-12S	53.6	30	15	OW-1-16D	82.5	30	15
				rate of ~30 scfh provided that the Bank #1 and Bank #3 were set		g was no greate	r than the pressu	ures provided in the	hydrostation	c tables prepare	ed by URS

Island Pump & Tank Corp. Page 1 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injec	tion System #1						
	Injection Bank	4			Injection Bank 5				Injectio	n Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	40	15	OW-1-17D	79.5	30	15	OW-1-21S	49.3	25	13
OW-1-14S	52.7	30	14	OW-1-18D	78.3	35	26	OW-1-22S	49.3	30	13
OW-1-15S	52.2	30	12	OW-1-19D	78.9	45	27	OW-1-23S	48.8	30	13
OW-1-16SR	51.8	25	28	OW-1-20D	79.5	35	26	OW-1-24S	48.4	30	13
OW-1-17S	50.7	30	26	OW-1-21D	79.5	30	27	OW-1-25S	48.8	30	13
OW-1-18S	50.2	35	13	OW-1-22D	79.5	30	28	OW-1-26SR	48.3	30	13
OW-1-19S	49.7	OFF	OFF	OW-1-23D	78.7	30	27	OW-1-27S	48.3	35	13
OW-1-20S All injection	tion after collecting	g readings. Inje		OW-1-24D rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	tion System #1		30 er than the press	OW-1-28S			
OW-1-20S ents: All injectorpora	ction point flows w	ere adjusted to g readings. Inje	the target flow	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure reading. ion System #1 Injection Bank 8	g was no greate		sures provided in the	e hydrostatio		
OW-1-20S All injection	ction point flows w	ere adjusted to g readings. Inje	the target flow	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes	the pressure reading.	g was no greate			e hydrostatio	c tables prepare	ed by URS
OW-1-20S All injectorpora	ction point flows w tion after collecting	ere adjusted to g readings. Inju	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure reading. ion System #1 Injection Bank 8	g was no greate	er than the press	sures provided in the	hydrostation in the interest i	n Bank 9	ps
OW-1-20S ents: All injectorpora	Injection Bank	ere adjusted to g readings. Inju	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure reading	g was no greate	psi	ures provided in the	Injectio Depth	n Bank 9	ps
OW-1-20S ents: All inject Corpora ID OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Injo	the target flow extion times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec ID OW-1-29S	the pressure reading. ion System #1 Injection Bank 8 Depth 48.5	g was no greate	psi 13	ID OW-1-33D	Injectio Depth 83.2	n Bank 9 scfh 35	ps 29
OW-1-20S ents: All injec Corpora ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Injo 7 scfh 30 30	the target flow ection times at I psi psi 28 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S	the pressure reading. cion System #1 Injection Bank 8 Depth 48.5	g was no greate scfn 25 25	psi 13	ID OW-1-33D OW-1-34D	Injectio Depth 83.2 84.5	n Bank 9 scfh 35	ps 30
OW-1-20S ents: All injec Corpora ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	ere adjusted to g readings. Injute 7. Scfh 30 30 30	the target flow ection times at I psi 28 27 29	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S	the pressure reading. cion System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate seft 25 25 35	psi 13 13	United the provided in the pro	Injectio Depth 83.2 84.5	n Bank 9 scfh 35 35	ps 29 30 30 30
OW-1-20S ents: All injec Corpora ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank 7 Testion Point flows we tion after collecting Injection Bank 7 Testion Bank	ere adjusted to g readings. Injector of the second of the	psi 28 27 29 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	the pressure reading. tion System #1 Injection Bank 8 Depth 48.5 48.8 49.3	g was no greate seft 25 25 35 30	psi 13 13 14 15	Universe provided in the ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injection Depth 83.2 84.5 85.0 85.0	n Bank 9 sefh 35 35 40	13 ps ps 29 30 30 30 29 28
OW-1-20S ents: All inject Corpora ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	re adjusted to g readings. Inje 7 scfh 30 30 30 30 30	psi 28 27 29 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure reading. tion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	g was no greate scfh 25 25 35 30 30	psi 13 13 14 15 14	Use provided in the ID OW-1-33D OW-1-35D OW-1-36D OW-1-37D	Injection Depth	n Bank 9 scfh 35 35 40	ps 29 30 30 30 29

Island Pump & Tank Corp. Page 2 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
]	Injection Bank 1	0		I	njection Bank 11				Injection	n Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	12	OW-1-41D	73.6	30	24	OW-1-43	67.4	25	21
OW-1-38S	50.6	35	14	OW-1-42D	71.0	35	22	OW-1-44	66.6	30	19
OW-1-39S	50.7	40	13	OW-1-45	65.7	35	20	OW-1-51R	60.6	30	18
OW-1-40S	51.1	40	13	OW-1-46	64.3	30	18	OW-1-52	59.3	40	17
OW-1-41S	51.5	40	15	OW-1-47	63.4	30	18	OW-1-53	60.0	30	18
OW-1-42S	51.3	30	14	OW-1-48	62.5	30	18	OW-1-54	60.0	30	18
				OW-1-49	61.5	35	17				
				OW-1-50	61.0	35	18				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

O ₂ Injection System #1									
	Mon	itoring Points Log			Mo	nitoring Points Log		Monitorin	g Points Log
ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle
MP-1-1D	30.64		0	MP-1-5	30.45	20.21	0	MP-1-1D	29.11
MP-1-1S	30.70	25.55	0	MP-1-6	22.75	13.45	0.2	MP-1-2D	38.07
MP-1-2D	25.00		0	MP-1-7	25.90	30.01	0	MP-1-3D	25.24
MP-1-2S	25.20	22.79	0	MP-1-8	27.50	3.97	0	MP-1-4D	26.99
MP-1-3D	23.08		2.3						
MP-1-3S	23.15	19.11	0.9						
MP-1-4D	25.92		0						
MP-1-4S	25.96	20.40	0						

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (~45 feet), MP-1-2D (46 feet), MP-1-2D (~41 feet), MP-1-3S (49 feet), MP-1-3D (~40 feet), MP-1-4S (53 feet), MP-1-4D (~35 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

Island Pump & Tank Corp. Page 3 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

					Date:	1/30/2017
		0	PERATIONAL N	IOTES		
GA5 Air Comp	ressor		LIGHTONIE	OILS		
1)	Oil Level Checked with system u * Unload system, wait until Deliv Oil Level with system unloaded		ı 9 psi	Yes X	No	
	Low (red		Normal (green)	X	High (orange)	
4) 5) 6)	Oil added Oil changed Oil filter changed Air filter Changed	Yes Yes Yes Yes		No X No X No X No X		_
	Oil separator changed Terminal strips checked	Yes X	<u> </u>	No X No		
AS-80 O ₂ Gener	rator					
1)	Profiler changed Coalescing changed	Yes Yes	_ _	No X No X		
		GE	NERAL SYSTEM	NOTES		
<u>Trailer</u> 1)	Performed general hous	ekeeping (i.e. sweep, collec	et trash inside and o	ut, etc.) Yes X	No	_
2)	Abnormal conditions of	served (e.g. vandalism				
3)	Other major activities c	ompleted				
4)	Supplies needed					
5)	Visitors					
	e activities such as any alarm/sh f-site, oil/filter/gasket and/or any	, 1	,			
	system running upon arrival. Fou cleaned up debris and leaves arou			a bad solenoid valve	. Need to return with parts to rep	lace. Wiped down all
	system running upon arrival. Too l a torn diaphragm. Replaced dan					nit. Took apart bad solenoid
OW-1-19S rema	ains off due to leaking line.					
	ed with 100 ppm isobutylene prior reading was 100 ppm.	to calibration and unit was	reading 98 ppm. Z	eroed unit with fresh	air and was reading 0.0 ppm. Ca	llibrated with 100 ppm
Electric Meter #	# 96-934-323 tied into Pole #4					
Action Items:						
l						

Island Pump & Tank Corp. Page 4 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

Date: Time: Weather: Outdoor Tempers Inside Trailer Temp Performed By	erature:	14 Clo ~5 ~70	/2017 :50 oudy 1° F O° F	- - - -							
	O ₂ Ge	enerator (A	irSep)		Compressor (Kaesar Rotary Screw))	
Hours			19,219.0	•	Compressor T	`ank *			100		(psi)
Feed Air Pressure *			100	(psi)		(rea	dings below	are made from	control pa	anel)	
			65	<i>(</i> ')	Delivery Air	. T			120		(psi)
Cycle Pressure *			65	(psi)	Element Outle	et Temperatu	ire		178		(oF)
Oxygen Receiver Pressur	re *			110	Running Hou	rs			22,459		(hours)
				(psi)	Loading Hour	rs .			14,683		(hours)
Oxygen Purity * maximum reading during loa	ding cycle		77.0	(percent) O ₂ Injecti	* maximum read on System #1	ing during load	ing cycle				
	njection Bank 1	l			Injection Bank 2				Injectio	n Bank 3	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	30	33	OW-1-5S	67.3	30	19	OW-1-9D	88.5	40	30
OW-1-2	96.5	40	19	OW-1-6S	67.0	30	18	OW-1-10D	87.2	35	23
OW-1-3	96.3	40	30	OW-1-7S	66.9	30	20	OW-1-11D	86.1	30	31
OW-1-4	95.0	40	32	OW-1-8S	66.7	35	18	OW-1-12D	85.3	30	30
OW-1-5D	93.9	30	32	OW-1-9S	66.0	30	19	OW-1-13D	84.7	30	32
OW-1-6D	92.4	35	30	OW-1-10S	54.6	30	13	OW-1-14D	84.1	40	30
OW-1-7D	91.1	30	32	OW-1-11S	54.1	30	15	OW-1-15D	83.3	45	28
OW-1-8D	89.6	30	33	OW-1-12S	53.6	35	16	OW-1-16D	82.5	35	14
				rate of ~30 scfh provided that t		g was no greate	r than the pressi	ures provided in the	hydrostation	c tables prepare	ed by URS

Island Pump & Tank Corp. Page 1 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injec	ion System #1						
	Injection Bank 4	l			Injection Bank 5				Injectio	n Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	ps
OW-1-13S	53.1	30	15	OW-1-17D	79.5	30	15	OW-1-21S	49.3	35	13
OW-1-14S	52.7	35	16	OW-1-18D	78.3	30	25	OW-1-22S	49.3	35	13
OW-1-15S	52.2	30	13	OW-1-19D	78.9	30	26	OW-1-23S	48.8	35	13
OW-1-16SR	51.8	30	30	OW-1-20D	79.5	30	28	OW-1-24S	48.4	30	1:
OW-1-17S	50.7	40	30	OW-1-21D	79.5	30	27	OW-1-25S	48.8	30	1:
OW-1-18S	50.2	30	12	OW-1-22D	79.5	30	27	OW-1-26SR	48.3	35	1:
OW-1-19S	49.7	OFF	OFF	OW-1-23D	78.7	30	25	OW-1-27S	48.3	30	1.
						20					1
				OW-1-24D ate of ~30 scfh provided that tank #5 were set at 3 minutes O ₂ Injec		g was no greate	28 er than the press	OW-1-28S ures provided in the	48.3 e hydrostation	c tables prepar	
All inject Corporati	ion point flows w	ere adjusted to g readings. Inj	the target flow r	ate of ~30 scfh provided that ank #5 were set at 3 minutes	the pressure reading	g was no greate	<u> </u>		e hydrostati		
All inject Corporati	ion point flows w	ere adjusted to g readings. Inj	the target flow r	ate of ~30 scfh provided that ank #5 were set at 3 minutes	the pressure reading	g was no greate	<u> </u>		e hydrostati	c tables prepar	ed by UR
ents: All inject Corporati	ion point flows won after collecting	ere adjusted to g readings. Inju	the target flow r	ate of ~30 scfh provided that ank #5 were set at 3 minutes O ₂ Injec	the pressure reading ion System #1 Injection Bank 8	g was no greate	er than the press	ures provided in the	Injection	c tables prepar	ed by UR
All inject Corporati	ion point flows w on after collecting Injection Bank 7	ere adjusted to g readings. Inju	the target flow rection times at B	rate of ~30 scfh provided that ank #5 were set at 3 minutes O2 Injector	the pressure reading ion System #1 Injection Bank 8 Depth	g was no greate	psi	ures provided in the	Injection Depth	on Bank 9	ed by UR
ID OW-1-25D	ion point flows woon after collecting Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inju scfh 45	the target flow rection times at B	rate of ~30 scfh provided that ank #5 were set at 3 minutes O2 Injector ID OW-1-29S	ion System #1 Injection Bank 8 Depth 48.5	g was no greate	psi 14	ID OW-1-33D	Injection Depth 83.2	on Bank 9 scfh 30	p p 3
ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inju scfh 45	the target flow rection times at B	ate of ~30 scfh provided that ank #5 were set at 3 minutes O ₂ Inject ID OW-1-29S OW-1-30S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5	g was no greate scfn 40 30	psi 14	ID OW-1-33D OW-1-34D	Injectic Depth 83.2 84.5	on Bank 9 scfh 30 35	p p 3 3
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Test of the second	ere adjusted to g readings. Injute scfh 45 40 30	the target flow rection times at B psi 28 28 27	ate of ~30 scfh provided that ank #5 were set at 3 minutes O ₂ Inject ID OW-1-29S OW-1-30S OW-1-31S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate seft 40 30 30	psi 14 14 15	Ures provided in the ID OW-1-33D OW-1-34D OW-1-35D	Injectica Depth 83.2 84.5 85.0	on Bank 9 scfh 30 35	p p 3 3 3 3 2 2
ID OW-1-25D OW-1-27D OW-1-28D	Injection Bank 7 Toppth 78.1 77.9 78.0	sefh 45 40 30	the target flow rection times at B psi 28 28 27 28	ate of ~30 scfh provided that ank #5 were set at 3 minutes O ₂ Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3	seft 40 30 30 30	psi 14 15 14	Ures provided in the ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injectic Depth 83.2 84.5 85.0 85.0	c tables preparent on Bank 9 scfh 30 35 40 45	1 ed by UR3 3 3 3 2 2 2 3 3
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	scfh 45 40 30 30	the target flow rection times at B psi 28 28 27 28 27	ate of ~30 scfh provided that ank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	seft 40 30 30 30 30	psi 14 15 14 14	Ures provided in the ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injectic Depth 83.2 84.5 85.0 84.0	scfh 30 35 40 45	3 3 2 2
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Injection Bank	ere adjusted to g readings. Injute to g read	the target flow rection times at B psi 28 28 27 28 27 35	ate of ~30 scfh provided that ank #5 were set at 3 minutes O ₂ Injec ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	scfh	psi	Ures provided in the ID OW-1-33D OW-1-35D OW-1-36D OW-1-37D OW-1-38D	Injectic Depth 83.2 84.5 85.0 84.0 82.0	30 35 40 45 40 30	p p 3 3 3 2 2 2 3

Island Pump & Tank Corp. Page 2 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Ir	jection Bank 1	0		I	njection Bank 11				Injection	n Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	13	OW-1-41D	73.6	30	25	OW-1-43	67.4	30	20
OW-1-38S	50.6	30	14	OW-1-42D	71.0	40	22	OW-1-44	66.6	45	20
OW-1-39S	50.7	30	13	OW-1-45	65.7	40	19	OW-1-51R	60.6	35	19
OW-1-40S	51.1	35	13	OW-1-46	64.3	35	18	OW-1-52	59.3	30	18
OW-1-41S	51.5	30	15	OW-1-47	63.4	30	7	OW-1-53	60.0	30	17
OW-1-42S	51.3	35	13	OW-1-48	62.5	30	19	OW-1-54	60.0	35	17
				OW-1-49	61.5	30	18				
				OW-1-50	61.0	30	18				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

	O ₂ Injection System #1										
	Mon	nitoring Points Log			Mo	onitoring Points Log		Monitorin	g Points Log		
ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle		
MP-1-1D	30.48		0.2	MP-1-5	30.20	25.39	0	MP-1-1D	29.25		
MP-1-1S	30.40	27.59	0.5	MP-1-6	22.53	24.11	0	MP-1-2D	31.12		
MP-1-2D	24.78		0	MP-1-7	25.80	22.53	0	MP-1-3D	30.58		
MP-1-2S	25.02	25.44	0	MP-1-8	27.31	7.72	0	MP-1-4D	30.07		
MP-1-3D	22.99		0								
MP-1-3S	22.95	29.50	0								
MP-1-4D	25.75		0.4								
MP-1-4S	25.78	31.01	0.4								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (~45 feet), MP-1-2S (46 feet), MP-1-2D (~41 feet), MP-1-3S (49 feet), MP-1-3D (~40 feet), MP-1-4S (53 feet), MP-1-4D (~35 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

Island Pump & Tank Corp. Page 3 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

								Date:	2/28/2017
				0	PERATIONAL N	NOTES			
GA5 Air Comp	ressor								
1)	Oil Level (Checked with system unlo system, wait until Delivery with system unloaded		less than	n 9 psi	Yes	X	No	
3) 4) 5) 6) 7)	Oil added Oil change Oil filter c Air filter C Oil separat	Low (red)ed hanged	Yes Yes Yes Yes Yes Yes Yes Yes	X	Normal (green)	No No No No No No	X X X X	High (orange)	_
	erator Profiler ch Coalescing	•	YesYes		_ _	No	X		
				GE	NERAL SYSTEM	INOTES			
<u>Trailer</u> 1)	I	Performed general housek	eeping (i.e. swee	ep, collec	et trash inside and c	out, etc.) Yes	X	No	_
2)		Abnormal conditions obse	ved (e.g. vanda	lism					
3)	_	Other major activities com	pleted						
4)		Supplies needed							
5)	,	Visitors							
		such as any alarm/shutd ilter/gasket and/or any o							
2-28-17 Found system and left	•	0 1	a small amount	of oil to	the compressor. V	Viped down	n all equipm	nent and cleaned up debris and l	eaves around shed. Restarted
OW-1-19S rema	nains off du	e to leaking line.							
PID was checke isobutylene and			calibration and	unit was	reading 98 ppm. 2	Zeroed unit	t with fresh a	air and was reading 0.0 ppm. C	alibrated with 100 ppm
Electric Meter #	# 96-934-32	23 tied into Pole #4							
Action Items:									

Island Pump & Tank Corp. Page 4 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

Date: Time: Weather: Outdoor Temper: Inside Trailer Temp Performed By	perature: y:	17 Cl ~48 ~7 Mike	3/29/2017 17:45 Clear ~48° F ~71° F Mike Ryan Tator (AirSep) Compressor (Kaesar Rotary Screw)								
	O ₂ Ge	enerator (Ai	rSep)				Compressor	(Kaesar Rota	ry Screw)	
Hours			19,737.0		Compressor T	Γank *			105		(psi)
Feed Air Pressure *			100	(psi)		(rea	dings below	are made from	control pa	anel)	
					Delivery Air	_			105		(psi)
Cycle Pressure *			70	(psi)	Element Outl	et Temperatu	ire		185		(oF)
Oxygen Receiver Pressui	re *			95 (psi)	Running Hou Loading Hou				23,019		(hours)
Oxygen Purity * maximum reading during loa	iding cycle		88.6	(percent)		ling during load	ing cycle				
I	njection Bank 1				on System #1 Injection Bank 2				Injectio	n Bank 3	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	30	32	OW-1-5S	67.3	40	19	OW-1-9D	88.5	35	30
OW-1-2	96.5	35	20	OW-1-6S	67.0	40	18	OW-1-10D	87.2	45	25
OW-1-3	96.3	40	30	OW-1-7S	66.9	30	19	OW-1-11D	86.1	30	30
OW-1-4	95.0	40	30	OW-1-8S	66.7	30	19	OW-1-12D	85.3	35	30
OW-1-5D	93.9	35	32	OW-1-9S	66.0	35	18	OW-1-13D	84.7	30	29
OW-1-6D	92.4	30	31	OW-1-10S	54.6	30	13	OW-1-14D	84.1	35	30
OW-1-7D	91.1	30	30	OW-1-11S	54.1	30	14	OW-1-15D	83.3	40	29
OW-1-8D	89.6	30	30	OW-1-12S	53.6	30	15	OW-1-16D	82.5	30	16
				rate of ~30 scfh provided that t Bank #1 and Bank #3 were set a		g was no greate	r than the press	ures provided in the	hydrostation	tables prepare	ed by URS

Island Pump & Tank Corp. Page 1 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O. Injec	tion System #1						
	Injection Bank 4			O ₂ Injec	Injection Bank 5				Injectio	n Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	15	OW-1-17D	79.5	40	15	OW-1-21S	49.3	35	13
OW-1-14S	52.7	30	14	OW-1-18D	78.3	30	26	OW-1-22S	49.3	40	13
OW-1-15S	52.2	30	13	OW-1-19D	78.9	40	27	OW-1-23S	48.8	40	13
OW-1-16SR	51.8	35	30	OW-1-20D	79.5	35	29	OW-1-24S	48.4	40	13
OW-1-17S	50.7	40	26	OW-1-21D	79.5	35	27	OW-1-25S	48.8	35	13
OW-1-18S	50.2	30	13	OW-1-22D	79.5	35	27	OW-1-26SR	48.3	40	13
		OFF	OFF	OW-1-23D	78.7	30	26	OW-1-27S	48.3	40	14
OW-1-19S	49.7	OFF									
OW-1-20S All inject	49.3	35 ere adjusted to		OW-1-24D rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec		30 g was no greate	28 er than the press	OW-1-28S	48.3	35 c tables prepare	
OW-1-20S All inject Corporati	49.3	35 ere adjusted to g readings. Injo	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure readin tion System #1 Injection Bank 8	g was no greate		ures provided in the	hydrostati	c tables prepare	
OW-1-20S All inject Corporati	49.3 ion point flows w	35 ere adjusted to g readings. Inje	the target flow	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes	the pressure readin	g was no greate			hydrostati	c tables prepare	ed by URS
OW-1-20S All inject Corporati	49.3 ion point flows woon after collecting	35 ere adjusted to g readings. Injo	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure readin tion System #1 Injection Bank 8	g was no greate	r than the press	ures provided in the	hydrostati	c tables prepare	ps
OW-1-20S All inject Corporati	49.3 ion point flows w on after collecting Injection Bank 7	35 ere adjusted to g readings. Injutes the sefficient of the seffi	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Injec	the pressure readin	g was no greate	psi	ures provided in the	Injection Depth	on Bank 9	ps
OW-1-20S All inject Corporation ID OW-1-25D	49.3 ion point flows w on after collecting Injection Bank 7 Depth 78.1	35 ere adjusted to g readings. Injute scfh 30	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S	the pressure readin tion System #1 Injection Bank 8 Depth 48.5	g was no greate	psi 13	ID OW-1-33D	Injection Depth 83.2	on Bank 9 scfh 30	ps 30
OW-1-20S All inject Corporati ID OW-1-25D OW-1-26D	49.3 ion point flows w on after collecting Injection Bank 7 Depth 78.1	35 ere adjusted to g readings. Injo scfh 30 40	the target flow extion times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S	the pressure readin tion System #1 Injection Bank 8 Depth 48.5	g was no greate scfh 35	psi 13	ID OW-1-33D OW-1-34D	Injectic Depth 83.2	on Bank 9 scfh 30 35	ps 30
OW-1-20S All inject Corporati ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	35 ere adjusted to g readings. Injo scfh 30 40 30	psi 28 29 28	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S	the pressure readin tion System #1 Injection Bank 8 Depth 48.5 48.8	scfh 35 25 25	psi 13 13	ID OW-1-33D OW-1-35D	Injectic Depth 83.2 84.5 85.0	on Bank 9 scfh 30 35	ps 30 30 29 31 28
OW-1-20S All inject Corporation ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank 7 Table 1 Tab	35 ere adjusted to g readings. Inju scfh 30 40 30 30	the target flow ection times at I	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	the pressure readin tion System #1 Injection Bank 8 Depth 48.5 48.8 49.3	sefh 35 25 25 20	psi 13 13 14 13	Ures provided in the ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injectic Depth 83.2 84.5 85.0 85.0	on Bank 9 sefh 30 35 40	ps 3(
OW-1-20S All inject Corporation ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	49.3 ion point flows won after collecting Injection Bank 7 78.1 78.1 77.9 78.0 78.4	35 ere adjusted to g readings. Injute seft 30 40 30 30 30	psi 28 29 28 28 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Injec ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure readin tion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	sefn 35 25 25 20 35	psi 13 13 14 13 13	Ures provided in the ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injectic Depth 83.2 84.5 85.0 84.0	scfh 30 35 40 36	ps 3(

Island Pump & Tank Corp. Page 2 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection							
I	njection Bank 1	0]	Injection Bank 11				Injection	n Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	13	OW-1-41D	73.6	30	25	OW-1-43	67.4	30	21
OW-1-38S	50.6	30	13	OW-1-42D	71.0	40	23	OW-1-44	66.6	30	18
OW-1-39S	50.7	35	13	OW-1-45	65.7	40	20	OW-1-51R	60.6	30	17
OW-1-40S	51.1	25	14	OW-1-46	64.3	45	19	OW-1-52	59.3	40	17
OW-1-41S	51.5	35	14	OW-1-47	63.4	40	18	OW-1-53	60.0	30	17
OW-1-42S	51.3	30	15	OW-1-48	62.5	45	18	OW-1-54	60.0	40	17
				OW-1-49	61.5	45	17				
				OW-1-50	61.0	30	19				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

				(O ₂ Injectio	on System #1			
	Mon	itoring Points Log			Mo	nitoring Points Log		Monitorin	g Points Log
ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DTW	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle
MP-1-1D	30.23		0	MP-1-5	30.05	20.25	0	MP-1-1D	24.71
MP-1-1S	30.35	18.69	0	MP-1-6	22.20	8.06	0	MP-1-2D	33.79
MP-1-2D	24.64		0.2	MP-1-7	25.52	18.57	0	MP-1-3D	27.30
MP-1-2S	24.83	25.83	0.4	MP-1-8	27.07	6.25	0	MP-1-4D	29.89
MP-1-3D	22.75		0						
MP-1-3S	22.70	24.70	0						
MP-1-4D	25.50		0						
MP-1-4S	25.54	25.59	0						

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (~45 feet), MP-1-2D (46 feet), MP-1-2D (~41 feet), MP-1-3S (49 feet), MP-1-3D (~40 feet), MP-1-4S (53 feet), MP-1-4D (~35 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

Island Pump & Tank Corp. Page 3 of 4

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

								Da	ate:	3/29/2017
				OP	PERATIONAL N	NOTES				
GA5 Air Co	mpressor			01	<u> </u>	TOTES				
G/13 / III Co	1) Oil Level * Unload	Checked with system unl system, wait until Deliver with system unloaded		less than 9) psi	Yes	X	No		
	2) Oli Level	Low (red)	X		Normal (green)			High (orang	(e)	
	3) Oil added	` ' <u>-</u>	Yes	X	Troffilat (green)	No		Tiigii (Orang		
	4) Oil chang	ged	Yes		•	No	X			
	5) Oil filter	changed	Yes		•	No	X			
	6) Air filter	-	Yes			No	X			
		ator changed	Yes	X		No	X			
	8) Terminal	strips checked	Yes	X		No				
AS-80 O₂ G	enerator									
<u> </u>	Profiler c	hanged	Yes			No	X			
	2) Coalescir	C			•	No	X			
					•					
				GEN	ERAL SYSTEM	1 NOTES				
Trailer										
Tranci	1)	Performed general housel	keeping (i.e. swee	ep, collect t	trash inside and o	out, etc.) Yes	X		No	
	2)	Abnormal conditions obse	erved (e.g. vanda	liem						
	2)	Tronormal conditions ocs	or ved (e.g. vanda							
	3)	Other major activities cor	npleted							
	4)	Supplies needed								
	5)	Visitors								
		s such as any alarm/shut filter/gasket and/or any o								
repairs as ne	eded and tes	n running upon arrival. Acted under pressure and leal Restarted system and left s	ks were gone. Re							
OW-1-19S r	remains off d	ue to leaking line.								
		00 ppm isobutylene prior to was 100 ppm.	calibration and	unit was re	eading 98 ppm. 2	Zeroed unit	t with fresh air	and was reading 0.	0 ppm. Calibr	rated with 100 ppm
Electric Met	ter # 96-934-	323 tied into Pole #4								
Action Item	ıs:									

Island Pump & Tank Corp. Page 4 of 4

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

Ti Wes Outdoor T Inside Traile	ate: me: ather: emperature: r Temperature: med By:	10 Clo ~3 ~7	9/2016 0:45 oudy 5° F 0° F e Ryan	- - - - -			Com	apressor (Kaesa					
	02 00.	1014101 (111	(C)					•					
Hours			35,752	_	Compressor	Tank *			(psi)				
Feed Air Press	ure *		105	(psi)			(reading	s below are made		ontrol panel)	4.5		
Cuala Dassaura	*		70	(mai)	Delivery Air				108 147		(psi)		
Cycle Pressure	*		70	(psi)	Element Ou	tlet Lempera	ature		147		(°F)		
Oxygen Receiv	ver Pressure *			105	Running Ho	urs			38,004		(hours)		
78				(psi)	Loading Ho				35,327		(hours)		
Oxygen Purity * maximum readin	g during loading cycl	ie e	78	(percent)	* maximum rea								
				1	O ₂ Injection		2				·		
ID	Injection Ba Depth	nk A sefh	psi	ID	Injection Ba Depth	scfh	psi	ID	Depth	njection Bank (scfh		
OW-2-2	90.2'	30	30	OW-2-9S	75'	30	19	OW-2-10D	97.2'	35	27		
OW-2-3	94.3'	30	30	OW-2-10S	75'	35	29	OW-2-11D	100.8'	35	34		
OW-2-4	94.7'	40	34	OW-2-11S	76.5'	30	22	OW-2-12	94'	35	20		
<u> </u>													
OW-2-5	95.3'	35	33	OW-2-13S	75'	35	20	OW-2-13D	97'	30	36		
OW-2-5	95.3' 95.7'	35 30	33					OW-2-13D OW-2-14	97' 96.4'	30			
				OW-2-13S	75'	35	20				36		
OW-2-6	95.7'	30	30	OW-2-13S	75' 75'	35	20 21	OW-2-14	96.4'	30	36 29		
OW-2-6 OW-2-7	95.7' 96'	30	30	OW-2-13S OW-2-15S OW-2-16S	75' 75' 75.5'	35 30 40	20 21 20	OW-2-14 OW-2-15D	96.4'	30	36 29 29		

Island Pump & Tank Corp. Page 1 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

								Date:		12/2	9/2016	
					0.1.1.1	G						
	Injection Ba	ınk D			O ₂ Injection Injection Ba		•		Ī	njection Bank I	7	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh		fh
OW-2-18D	95.5'	20	30	OW-2-22S	76'	25	29	OW-2-26D	95'	30	2	9
OW-2-19	96.1'	25	30	OW-2-24S	77.8'	30	29	OW-2-27	93.5'	30	3	0
OW-2-20D	96.6'	35	33	OW-2-26S	74'	25	31	OW-2-28D	92.1'	30	2	7
OW-2-21	96.6'	30	30	OW-2-28S	76'	25	30	OW-2-29	92.2'	30	2	9
OW-2-22D	96.3'	30	29	OW-2-30S	67.8'	30	29	OW-2-30D	88'	30	2	8
OW-2-23	97.2'	30	29	OW-2-34	71'	30	27	OW-2-31	86'	30	2	9
OW-2-24D	97'	30	31	OW-2-35	69.2'	30	31	OW-2-32	84'	30	3	0
OW-2-25	96'	30	30	OW-2-36	64.8'	30	33	OW-2-33	82'	30	3	4
Comments:				flow rate of ~30 scf ks D & E are turned		he pressure rea	ding was no	greater than the pres	sures provide	ed in the hydrost	atic tables prepa	ared by URS
					O ₂ Injection	n System #2						
	Injection Ba	nk G			Injection Ba	nk H			Mor	itoring Points		<u> </u>
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW		mg/L) tom	PID (ppm)
OW-2-37	62.8'	35	22	OW-2-45	61.1'	30	21	MP-2-1	33.51	23	.00	0
OW-2-38	62.1'	35	23	OW-2-46	61'	35	21	MP-2-2	34.83	21	.49	0
OW-2-39	60'	40	20	OW-2-47	60.5'	30	21	MP-2-3S	34.65	35	.51	0.1
OW-2-40	61.7'	40	21					MP-2-3D	34.83	39	.38	1.3
OW-2-41	61.7'	30	20					MP-2-4	23.32	37	.33	0
OW-2-42	61.6'	30	20					MP-2-5	21.48	28	.78	0
OW-2-43	61.4'	35	22									
OW-2-44R	60.6'	30	20									
Comments:	All injection point f			flow rate of ~30 scf	h provided that t	he pressure rea	ding was no	greater than the pres	ssures provide	ed in the hydrost	atic tables prepa	ared by URS

Island Pump & Tank Corp. Page 2 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

		Date:	12/29/2016
	ODEDATIONAL	NOTEC	
GA5 Air Compressor	OPERATIONAL N	NOTES	
Oil Level Checked with system unload	ded*	Yes X No	
* Unload system, wait until Delivery			<u> </u>
2) Oil Level with system unloaded	in Tressure is less than 5 psi		
Low (red	d) Normal (green)	X High (orange)	
3) Oil added	Yes Yes	No X	
4) Oil changed	Yes	No X	
,		No X	
5) Oil filter changed	Yes		
6) Air filter Changed	Yes	No X	
7) Oil separator cleaned	Yes	No X	
8) Terminal strips checked	Yes X	No	
AS-80 O ₂ Generator			
1) Prefilter changed	Yes	No X	
2) Coalescing changed	Yes	No X	
2) Coalescing changed	i es	N0X	
	GENERAL SYSTEM	MNOTES	
<u>Trailer</u>			
Performed general housekeeping (i.e. a)	•		
	Yes X	No	
Abnormal conditions observed (e.g. value)	andalism		
Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdo			
transported off-site, oil/filter/gasket and/or any oth	er abnormal operating conditions:	•	
1-25-16 Responded to alarm condition at site. Found			out. System tripped out due to a
power failure from the last storm event. Restart system	n and observed to make sure it was c	cycling correctly. Left system running.	
1 20 16 F 1 1 1 1 1 1 1 1	-1.4 - 154 14 4 1 14	all all Wind dame all ancient and all an	
1-30-16 Found system running upon arrival. Made sli	gnt adjustment to temperature inside	sned. Wiped down all equipment and clean	ed up debris and leaves around sne
Left system running.			
DID was abaded with 100 mm is abutulana mion to	olibration and unit was no ding 00 mm	7d smit suith fresh sin and susa medi	a a 0 0 mmm. Calibrated with 100
PID was checked with 100 ppm isobutylene prior to ca	and unit was reading 98 pp	om. Zeroed unit with fresh air and was readi	ng 0.0 ppm. Canbrated with 100
ppm isobutylene and reading was 100 ppm.			
Electric Meter # 96-929-544 tied into Pole #3			
Steelle Meter # 70 727 5 FF fled into 1 010 #5			
Action Items:			
Tellon realis.			

Island Pump & Tank Corp. Page 3 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

Ti Wes Outdoor T Inside Traile	ate: me: ather: emperature: r Temperature: med By: O2 Ger	16 Clo ~6 ~7	2017 5:30 budy 5° F 1° F E Ryan	-			Con	npressor (Kaesa	ar Rotary	pressor (Kaesar Rotary Screw)			
Hours			36,207	<u>-</u>	Compressor	Tank *			120		(psi)		
Feed Air Press Cycle Pressure			120	(psi)	Delivery Air Element Ou			s below are mad	de from co	ontrol panel)	(psi) (°F)		
Oxygen Receiv				_ * ′	Running Ho Loading Ho	urs	ature		38,698 35,801		(hours) (hours)		
Oxygen Purity * maximum reading	g during loading cyc	e	78	(percent)	* maximum rea	ding during loa	nding cycle						
				1	O ₂ Injection		2						
ID	Injection Ba Depth	nk A scfh	psi	ID	Injection Ba Depth	nk B scfh	psi	ID	Depth	njection Bank (scfh		
	Depth							110					
OW-2-2	90.2'	30	30	OW-2-9S	75'	35	21	OW-2-10D	97.2'	35	30		
	90.2'							OW-2-10D	97.2'	35 45			
OW-2-2	•	30	30	OW-2-9S	75'	35	21				30		
OW-2-2 OW-2-3	94.3'	30	30	OW-2-9S OW-2-10S	75' 75'	35	21	OW-2-11D	100.8'	45	30 34		
OW-2-2 OW-2-3 OW-2-4	94.3'	30 30 30	30 30 35	OW-2-9S OW-2-10S OW-2-11S	75' 75' 76.5'	35 30 30	21 31 22	OW-2-11D	100.8'	45	30 34 23		
OW-2-2 OW-2-3 OW-2-4 OW-2-5	94.3' 94.7' 95.3'	30 30 30 30 35	30 30 35 33	OW-2-9S OW-2-10S OW-2-11S OW-2-13S	75' 75' 76.5'	35 30 30 30	21 31 22 23	OW-2-11D OW-2-12 OW-2-13D	100.8' 94' 97'	45 40 40	30 34 23 36		
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6	94.3' 94.7' 95.3' 95.7'	30 30 30 35 35	30 30 35 33 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	75' 75' 76.5' 75' 75'	35 30 30 30 30	21 31 22 23 20	OW-2-11D OW-2-12 OW-2-13D OW-2-14	100.8' 94' 97' 96.4'	45 40 40 40	30 34 23 36 28		
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7	94.3' 94.7' 95.3' 95.7'	30 30 30 35 35 35	30 30 35 33 30 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	75' 75' 76.5' 75' 75' 75'	35 30 30 30 30 30 35	21 31 22 23 20 20	OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	94' 97' 96.4' 94.6'	45 40 40 40 30	30 34 23 36 28 29		

Island Pump & Tank Corp. Page 1 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

								Date:		3/1	/2017	
					O ₂ Injection	n System #2	2					
	Injection Ba	ınk D			Injection Ba				I	njection Bank I	7	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	so	fh
OW-2-18D	95.5'	30	32	OW-2-22S	76'	35	28	OW-2-26D	95'	30	9	30
OW-2-19	96.1'	30	31	OW-2-24S	77.8'	35	30	OW-2-27	93.5'	30	3	60
OW-2-20D	96.6'	35	32	OW-2-26S	74'	35	30	OW-2-28D	92.1'	30	2	19
OW-2-21	96.6'	40	30	OW-2-28S	76'	40	29	OW-2-29	92.2'	30	2	18
OW-2-22D	96.3'	30	29	OW-2-30S	67.8'	30	27	OW-2-30D	88'	30	2	28
OW-2-23	97.2'	30	31	OW-2-34	71'	40	27	OW-2-31	86'	30	2	27
OW-2-24D	97'	30	30	OW-2-35	69.2'	40	31	OW-2-32	84'	30	3	31
OW-2-25	96'	35	28	OW-2-36	64.8'	30	33	OW-2-33	82'	30	3	13
Comments:				flow rate of ~30 scf ks D & E are turned		he pressure rea	iding was no	greater than the pres	sures provide	ed in the hydrost	atic tables prepare	ared by URS
					O ₂ Injection		2					
	Injection Ba	ınk G			Injection Ba	nk H	1		Mor	nitoring Points l		1
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	DO (i	mg/L) tom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	33.22	28	.61	0
OW-2-38	62.1'	30	22	OW-2-46	61'	30	21	MP-2-2	34.57	31	.58	0.2
OW-2-39	60'	30	21	OW-2-47	60.5'	25	20	MP-2-3S	34.45	27	.11	0
OW-2-40	61.7'	35	20					MP-2-3D	34.57	32	.34	0.2
OW-2-41	61.7'	35	20					MP-2-4	23.11	27	.94	0.3
OW-2-42	61.6'	45	19					MP-2-5	21.30	30	.07	0
OW-2-43	61.4'	35	22									
OW-2-44R	60.6'	30	20									
Comments:	All injection point to Corporation after co			flow rate of ~30 scf	h provided that t	he pressure rea	iding was no	greater than the pres	sures provide	ed in the hydrost	atic tables prepare	ared by URS

Island Pump & Tank Corp. Page 2 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

		Date:	3/1/2017
	OPER ATION A NO	NPG.	
CASA: C	OPERATIONAL NO	res	
GA5 Air Compressor	J. J.	Yes X No	
Oil Level Checked with system unload * Unload system, wait until Delivery.		Yes X No	
2) Oil Level with system unloaded	All I lessure is less than 9 psi		
Low (re	d) Normal (green)	X High (orange)	
3) Oil added	Yes	No X	
4) Oil changed	Yes	No X	
5) Oil filter changed	Yes	No X	
6) Air filter Changed	Yes	No X	
7) Oil separator cleaned	Yes	No X	
8) Terminal strips checked	Yes X	No	
AS-80 O ₂ Generator			
1) Prefilter changed	Yes	No X	
Coalescing changed	Yes	No X	
, , ,			
	GENERAL SYSTEM N	OTES	
Trailer			
1) Performed general housekeeping (i.e.	sweep, collect trash inside and out, etc.)		
,	Yes X	No	
			
2) Abnormal conditions observed (e.g. v	andalism		
2) Other median extinition consults to			
Other major activities completed			
			_
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdo	,		
transported off-site, oil/filter/gasket and/or any oth	er abnormal operating conditions:		
3-1-17 Found system running upon arrival. Made adj		it from spilling onto floor. Wiped down al	I equipment and cleaned up deb
and leaves around shed. Restarted system and left sys	tem running.		
PID was checked with 100 ppm isobutylene prior to c	alibration and unit was reading 98 ppm	Zeroed unit with fresh air and was reading	0.0 ppm Calibrated with 100
ppm isobutylene and reading was 100 ppm.			··· FF
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

Island Pump & Tank Corp. Page 3 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

Wea Outdoor Te Inside Trailer	ate: me: ather: emperature: r Temperature: med By:	15 R ~4. ~6	/2017 5:50 ain 5° F 8° F e Ryan	- -							
	O2 Ger	nerator (Air	Sep)				Com	pressor (Kaesa	ar Rotary	Screw)	
Hours			36,613		Compressor Tank * 80(
Feed Air Pressu	ıre *		80	(psi)	(readings below are made from control panel)						
ı		•		•	Delivery Air				84		(psi)
Cycle Pressure	*		65	(psi)	Element Out	tlet Tempera	ature		172		(°F)
Oxygen Receive	er Pressure *			100 (psi)	Running Ho Loading Ho				39,319 36,225		(hours) (hours)
Oxygen Purity * maximum reading	g during loading cycl	le	78.9	_(percent)		ding during loa					
					O ₂ Injection	System #2					
				1							
TD.	Injection Bar		nei	ID	Injection Ba	nk B		ID		njection Bank (
ID OW 2.2	Depth	scfh	psi	ID OW 2 OS	Injection Ba	nk B	psi	ID OW 2.10D	Depth	scfh	sefh
ID OW-2-2			psi 33	1D OW-2-9S	Injection Ba	nk B		ID OW-2-10D			
	Depth	scfh			Injection Ba	nk B	psi		Depth	scfh	scfh
OW-2-2	90.2'	scfh 30	33	OW-2-9S	Injection Bai Depth 75'	scfh 30	psi 21	OW-2-10D	Depth 97.2'	scfh 30	scfh 2
OW-2-2 OW-2-3	90.2' 94.3'	30 30	33	OW-2-9S OW-2-10S	Injection Bar Depth 75'	scfh 30 30	21 33	OW-2-10D OW-2-11D	97.2' 100.8'	30 30	sefh 2 33
OW-2-2 OW-2-3 OW-2-4	90.2' 94.3' 94.7'	30 30 30	33 31 32	OW-2-9S OW-2-10S OW-2-11S	Injection Bar Depth 75' 75' 76.5'	scfh 30 30 30	21 33 25	OW-2-10D OW-2-11D OW-2-12	97.2' 100.8' 94'	sefh 30 30 25	sefh 2 33 20
OW-2-2 OW-2-3 OW-2-4 OW-2-5	90.2' 94.3' 94.7' 95.3'	30 30 30 30 25	33 31 32 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S	75' 76.5' 75'	30 30 30 40	psi 21 33 25 20	OW-2-10D OW-2-11D OW-2-12 OW-2-13D	97.2' 100.8' 94' 97'	sefh 30 30 25 20	sefh 2 33 20 36
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6	90.2' 94.3' 94.7' 95.3' 95.7'	sefh 30 30 30 25 25	33 31 32 30 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	Injection Bas Depth 75' 75' 76.5' 75	30 30 30 40 35	psi 21 33 25 20 21	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14	97.2' 100.8' 94' 97' 96.4'	sefh 30 30 25 20 30	sefh 2 33 20 36 28
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7	90.2' 94.3' 94.7' 95.3' 95.7'	sefh 30 30 30 25 25 25	33 31 32 30 30 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	Injection Bas Depth	30 30 30 40 35 30	21 33 25 20 21 21	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	97.2' 100.8' 94' 97' 96.4' 94.6'	sefh 30 30 25 20 30 35	scft 2 33 20 36 28 29

Island Pump & Tank Corp. Page 1 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

								Date:		3/28	3/2017	
					O ₂ Injection	1 System #7	2					
	Injection Ba	nnk D			Injection Ba				I	njection Bank I	?	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	so	fh
OW-2-18D	95.5'	30	32	OW-2-22S	76'	30	20	OW-2-26D	95'	30	2	
OW-2-19	96.1'	30	30	OW-2-24S	77.8'	30	23	OW-2-27	93.5'	30	3	51
OW-2-20D	96.6'	35	31	OW-2-26S	74'	30	21	OW-2-28D	92.1'	30	2	28
OW-2-21	96.6'	30	34	OW-2-28S	76'	30	22	OW-2-29	92.2'	35	2	19
OW-2-22D	96.3'	40	28	OW-2-30S	67.8'	30	18	OW-2-30D	88'	35	2	28
OW-2-23	97.2'	40	30	OW-2-34	71'	35	22	OW-2-31	86'	35	2	27
OW-2-24D	97'	40	29	OW-2-35	69.2'	30	23	OW-2-32	84'	25	3	30
OW-2-25	96'	40	29	OW-2-36	64.8'	35	34	OW-2-33	82'	25	2	21
Comments:				flow rate of ~30 scf ks D & E are turned		he pressure rea	iding was no	greater than the pres	sures provide	ed in the hydrost	atic tables prepa	ared by URS
					O ₂ Injection		2	1				
	Injection Ba	1			Injection Ba		1			nitoring Points I		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Bot		PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	33.17	29	.15	0.2
OW-2-38	62.1'	30	22	OW-2-46	61'	30	21	MP-2-2	34.51	28	.12	0
OW-2-39	60'	25	20	OW-2-47	60.5'	30	20	MP-2-3S	34.36	24	.77	0
OW-2-40	61.7'	35	20					MP-2-3D	34.43	26	.00	0
OW-2-41	61.7'	45	20					MP-2-4	23.07	18	.12	0
OW-2-42	61.6'	40	20					MP-2-5	21.25	16	.05	0
OW-2-43	61.4'	30	22									
OW-2-44R	60.6'	30	21									
Comments:	All injection point to			flow rate of ~30 scf	h provided that t	he pressure rea	iding was no	greater than the pres	sures provide	ed in the hydrost	atic tables prepare	ared by URS

Island Pump & Tank Corp. Page 2 of 3

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

			Date:	3/28/2017
		OPEDATIONAL NOTE		
GA5 Air C		OPERATIONAL NOTE		
GAS All C	ompressor 1) Oil Level Checked with system unloaded	d*	Yes X No	
	* Unload system, wait until Delivery Air		105 A 110	
	2) Oil Level with system unloaded	. Hessure is less than 7 psi		
	Low (red)	X Normal (green)	High (orange)	
	3) Oil added	Yes X	No	
	4) Oil changed	Yes	No X	
	5) Oil filter changed	Yes	No X	
	6) Air filter Changed	Yes	No X	
	7) Oil separator cleaned	Yes	No X	
	8) Terminal strips checked	Yes X	No	
AS-80 O ₂ C	<u>Generator</u>			
	Prefilter changed	Yes	No X	
	2) Coalescing changed	Yes	No X	
		GENERAL SYSTEM NOT	TES	
<u>Trailer</u>				
	1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No			
	4) Supplies needed			
	_			
	5) Visitors			
December 1				
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions:				
it ansported on-site, on/inter/gasket and/or any other abilior mai operating conditions.				
	ound system running upon arrival. Added sma			buildup on floats. Wiped down al
equipment	and cleaned up debris and leaves around shed	Restarted system and left system runn	ing.	
DID	t t td 100 - talastalan asiasta ali	7	The state of the state and assessment to	0.0 C. Ph., 4 4 100
	necked with 100 ppm isobutylene prior to calily tylene and reading was 100 ppm.	bration and unit was reading 98 ppm. Ze	eroed unit with fresh air and was readii	ng 0.0 ppm. Calibrated with 100
ррш 1300ас	yiele and reading was 100 ppm.			
Electric Me	eter # 96-929-544 tied into Pole #3			
Action Iter	ma.			
Action Itel	.ns.			

Island Pump & Tank Corp. Page 3 of 3